Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 40(6): 111173, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947957

RESUMO

Microorganisms are generally sensed by receptors recognizing microbial molecules, which evoke changes in cellular activities and gene expression. Bacterial pathogens induce secretion of the danger signal ATP as an early alert response of intestinal epithelial cells, initiating overt inflammation. However, what triggers ATP secretion during infection is unclear. Here we show that the inherently mechanosensitive plasma membrane channel PIEZO1 acts as a sensor for bacterial entry. PIEZO1 is mechanically activated by invasion-induced membrane ruffles upstream of Ca2+ influx and ATP secretion. Mimicking mechanical stimuli of pathogen uptake with sterile beads equally elicits ATP secretion. Chemical or genetic PIEZO1 inactivation inhibits mechanically induced ATP secretion. Moreover, chemical or mechanical PIEZO1 activation evokes gene expression in immune and barrier pathways. Thus, mechanosensation of invasion-induced plasma membrane distortion initiates immune signaling upon infection, independently of detection of microbial molecules. Hence, PIEZO1-dependent detection of infection is driven by physical signals instead of chemical ligands.


Assuntos
Canais Iônicos , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia
2.
J Phycol ; 49(2): 401-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27008526

RESUMO

We investigated twenty-six strains of Xanthidium antilopaeum Kütz. and seven strains of X. cristatum Ralfs isolated from various European localities or obtained from public culture collections. A combination of molecular, geometric morphometric, and morphological data were used to reveal the patterns of the phylogenetic and morphological differentiation of these taxonomically very compli-cated desmid taxa. The molecular data based on trnG(ucc) and ITS rDNA sequences illustrated the monophyly of both the complexes, which indicated that their traditional morphology-based discriminative criteria, such as the different number of spines, may generally continue to be considered relevant. The single exception was X. antilopaeum var. basiornatum B. Eichler et Raciborski, which was positioned outside the X. antilopaeum/cristatum clade. The independent status of this taxon was also confirmed on the basis of the geometric morphometric data, so that we concluded that it probably represents a separate species. Within X. cristatum complex, the traditional varieties X. cristatum var. cristatum Ralfs, X. cristatum var. uncinatum Ralfs, and X. cristatum var. scrobiculatum Scott et Grönblad turned out to be separate taxa. Conversely, X. cristatum var. bituberculatum Lowe lacked any taxonomical value. Our data on X. antilopaeum illustrated extensive phylogenetic as well as phenotypic variability within this species complex. However, our data did not result in any unambiguous pattern that would allow sound taxonomic classification. Finally, we also found out that the morphologically peculiar Staurastrum tumidum Ralfs belongs to the genus Xanthidium based on the combined rbcL + cox III data set. Consequently, this species was formally transferred to this genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA