Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496428

RESUMO

Pathogen epidemics are key threats to human and wildlife health. Across systems, host protection from pathogens following initial exposure is often incomplete, resulting in recurrent epidemics through partially-immune hosts. Variation in population-level protection has important consequences for epidemic dynamics, but whether acquired protection influences host heterogeneity in susceptibility and its epidemiological consequences remains unexplored. We experimentally investigated whether prior exposure (none, low-dose, or high-dose) to a bacterial pathogen alters host heterogeneity in susceptibility among songbirds. Hosts with no prior pathogen exposure had little variation in protection, but heterogeneity in susceptibility was significantly augmented by prior pathogen exposure, with the highest variability detected in hosts given high-dose prior exposure. An epidemiological model parameterized with experimental data found that heterogeneity in susceptibility from prior exposure more than halved epidemic sizes compared with a homogeneous population with identical mean protection. However, because infection-induced mortality was also greatly reduced in hosts with prior pathogen exposure, reductions in epidemic size were smaller than expected in hosts with prior exposure. These results highlight the importance of variable protection from prior exposure and/or vaccination in driving host heterogeneity and epidemiological dynamics.

2.
Microbiol Spectr ; 11(6): e0271523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888992

RESUMO

IMPORTANCE: Inherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes of Myotis lucifugus and Perimyotis subflavus indicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Animais , Quirópteros/microbiologia , Pele , Nariz
3.
Ecology ; 104(10): e4147, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522873

RESUMO

Environmental pathogen reservoirs exist for many globally important diseases and can fuel epidemics, influence pathogen evolution, and increase the threat of host extinction. Species composition can be an important factor that shapes reservoir dynamics and ultimately determines the outcome of a disease outbreak. However, disease-induced mortality can change species communities, indicating that species responsible for environmental reservoir maintenance may change over time. Here we examine the reservoir dynamics of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We quantified changes in pathogen shedding, infection prevalence and intensity, host abundance, and the subsequent propagule pressure imposed by each species over time. We find that highly shedding species are important during pathogen invasion, but contribute less over time to environmental contamination as they also suffer the greatest declines. Less infected species remain more abundant, resulting in equivalent or higher propagule pressure. More broadly, we demonstrate that high infection intensity and subsequent mortality during disease progression can reduce the contributions of high-shedding species to long-term pathogen maintenance.

4.
Biol Lett ; 19(3): 20220574, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36855852

RESUMO

Understanding host persistence with emerging pathogens is essential for conserving populations. Hosts may initially survive pathogen invasions through pre-adaptive mechanisms. However, whether pre-adaptive traits are directionally selected to increase in frequency depends on the heritability and environmental dependence of the trait and the costs of trait maintenance. Body condition is likely an important pre-adaptive mechanism aiding in host survival, although can be seasonally variable in wildlife hosts. We used data collected over 7 years on bat body mass, infection and survival to determine the role of host body condition during the invasion and establishment of the emerging disease, white-nose syndrome. We found that when the pathogen first invaded, bats with higher body mass were more likely to survive, but this effect dissipated following the initial epizootic. We also found that heavier bats lost more weight overwinter, but fat loss depended on infection severity. Lastly, we found mixed support that bat mass increased in the population after pathogen arrival; high annual plasticity in individual bat masses may have reduced the potential for directional selection. Overall, our results suggest that some factors that contribute to host survival during pathogen invasion may diminish over time and are potentially replaced by other host adaptations.


Assuntos
Quirópteros , Animais , Animais Selvagens , Fenótipo
5.
Sci Rep ; 13(1): 4615, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944682

RESUMO

Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detect P. destructans in environmental samples, we initiated this study to assess whether P. destructans can persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to two P. destructans contaminated hibernacula in Vermont where native bats had been excluded. Infection with P. destructans was apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure to P. destructans is sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Animais , Quirópteros/microbiologia , Animais Selvagens , Síndrome
6.
Proc Biol Sci ; 290(1995): 20230040, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36946110

RESUMO

Demographic factors are fundamental in shaping infectious disease dynamics. Aspects of populations that create structure, like age and sex, can affect patterns of transmission, infection intensity and population outcomes. However, studies rarely link these processes from individual to population-scale effects. Moreover, the mechanisms underlying demographic differences in disease are frequently unclear. Here, we explore sex-biased infections for a multi-host fungal disease of bats, white-nose syndrome, and link disease-associated mortality between sexes, the distortion of sex ratios and the potential mechanisms underlying sex differences in infection. We collected data on host traits, infection intensity and survival of five bat species at 42 sites across seven years. We found females were more infected than males for all five species. Females also had lower apparent survival over winter and accounted for a smaller proportion of populations over time. Notably, female-biased infections were evident by early hibernation and likely driven by sex-based differences in autumn mating behaviour. Male bats were more active during autumn which likely reduced replication of the cool-growing fungus. Higher disease impacts in female bats may have cascading effects on bat populations beyond the hibernation season by limiting recruitment and increasing the risk of Allee effects.


Assuntos
Quirópteros , Hibernação , Micoses , Feminino , Masculino , Animais , Animais Selvagens , Quirópteros/microbiologia , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Fungos
7.
Ecol Lett ; 25(2): 483-497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935272

RESUMO

Emerging infectious diseases have resulted in severe population declines across diverse taxa. In some instances, despite attributes associated with high extinction risk, disease emergence and host declines are followed by host stabilisation for unknown reasons. While host, pathogen, and the environment are recognised as important factors that interact to determine host-pathogen coexistence, they are often considered independently. Here, we use a translocation experiment to disentangle the role of host traits and environmental conditions in driving the persistence of remnant bat populations a decade after they declined 70-99% due to white-nose syndrome and subsequently stabilised. While survival was significantly higher than during the initial epidemic within all sites, protection from severe disease only existed within a narrow environmental space, suggesting host traits conducive to surviving disease are highly environmentally dependent. Ultimately, population persistence following pathogen invasion is the product of host-pathogen interactions that vary across a patchwork of environments.


Assuntos
Ascomicetos , Quirópteros , Micoses , Animais , Ascomicetos/patogenicidade , Quirópteros/microbiologia , Interações Hospedeiro-Patógeno , Micoses/virologia , Nariz/microbiologia
8.
Front Immunol ; 12: 721048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630394

RESUMO

Infectious hematopoietic necrosis virus (IHNV) and Flavobacterium psychrophilum are major pathogens of farmed rainbow trout. Improved control strategies are desired but the influence of on-farm environmental factors that lead to disease outbreaks remain poorly understood. Water reuse is an important environmental factor affecting disease. Prior studies have established a replicated outdoor-tank system capable of varying the exposure to reuse water by controlling water flow from commercial trout production raceways. The goal of this research was to evaluate the effect of constant or pulsed reuse water exposure on survival, pathogen prevalence, and pathogen load. Herein, we compared two commercial lines of rainbow trout, Clear Springs Food (CSF) and Troutex (Tx) that were either vaccinated against IHNV with a DNA vaccine or sham vaccinated. Over a 27-day experimental period in constant reuse water, all fish from both lines and treatments, died while mortality in control fish in spring water was <1%. Water reuse exposure, genetic line, vaccination, and the interaction between genetic line and water exposure affected survival (P<0.05). Compared to all other water sources, fish exposed to constant reuse water had 46- to 710-fold greater risk of death (P<0.0001). Tx fish had a 2.7-fold greater risk of death compared to CSF fish in constant reuse water (P ≤ 0.001), while risk of death did not differ in spring water (P=0.98). Sham-vaccinated fish had 2.1-fold greater risk of death compared to vaccinated fish (P=0.02). Both IHNV prevalence and load were lower in vaccinated fish compared to sham-vaccinated fish, and unexpectedly, F. psychrophilum load associated with fin/gill tissues from live-sampled fish was lower in vaccinated fish compared to sham-vaccinated fish. As a result, up to forty-five percent of unvaccinated fish were naturally co-infected with F. psychrophilum and IHNV and the coinfected fish exhibited the highest IHNV loads. Under laboratory challenge conditions, co-infection with F. psychrophilum and IHNV overwhelmed IHNV vaccine-induced protection. In summary, we demonstrate that exposure to reuse water or multi-pathogen challenge can initiate complex disease dynamics that can overwhelm both vaccination and host genetic resistance.


Assuntos
Aquicultura , Suscetibilidade a Doenças , Doenças dos Peixes/etiologia , Doenças dos Peixes/prevenção & controle , Oncorhynchus mykiss/genética , Vacinas , Microbiologia da Água , Animais , Coinfecção , Exposição Ambiental , Doenças dos Peixes/diagnóstico , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Imunização , Prognóstico , Vacinas/imunologia
9.
J Anim Ecol ; 90(5): 1134-1141, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33550607

RESUMO

Emerging infectious diseases can have devastating effects on host communities, causing population collapse and species extinctions. The timing of novel pathogen arrival into naïve species communities can have consequential effects that shape the trajectory of epidemics through populations. Pathogen introductions are often presumed to occur when hosts are highly mobile. However, spread patterns can be influenced by a multitude of other factors including host body condition and infectiousness. White-nose syndrome (WNS) is a seasonal emerging infectious disease of bats, which is caused by the fungal pathogen Pseudogymnoascus destructans. Within-site transmission of P. destructans primarily occurs over winter; however, the influence of bat mobility and infectiousness on the seasonal timing of pathogen spread to new populations is unknown. We combined data on host population dynamics and pathogen transmission from 22 bat communities to investigate the timing of pathogen arrival and the consequences of varying pathogen arrival times on disease impacts. We found that midwinter arrival of the fungus predominated spread patterns, suggesting that bats were most likely to spread P. destructans when they are highly infectious, but have reduced mobility. In communities where P. destructans was detected in early winter, one species suffered higher fungal burdens and experienced more severe declines than at sites where the pathogen was detected later in the winter, suggesting that the timing of pathogen introduction had consequential effects for some bat communities. We also found evidence of source-sink population dynamics over winter, suggesting some movement among sites occurs during hibernation, even though bats at northern latitudes were thought to be fairly immobile during this period. Winter emergence behaviour symptomatic of white-nose syndrome may further exacerbate these winter bat movements to uninfected areas. Our results suggest that low infectiousness during host migration may have reduced the rate of expansion of this deadly pathogen, and that elevated infectiousness during winter plays a key role in seasonal transmission. Furthermore, our results highlight the importance of both accurate estimation of the timing of pathogen spread and the consequences of varying arrival times to prevent and mitigate the effects of infectious diseases.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Animais , Nariz
10.
Nat Rev Microbiol ; 19(3): 196-210, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462478

RESUMO

The recent introduction of Pseudogymnoascus destructans (the fungal pathogen that causes white-nose syndrome in bats) from Eurasia to North America has resulted in the collapse of North American bat populations and restructured species communities. The long evolutionary history between P. destructans and bats in Eurasia makes understanding host life history essential to uncovering the ecology of P. destructans. In this Review, we combine information on pathogen and host biology to understand the patterns of P. destructans spread, seasonal transmission ecology, the pathogenesis of white-nose syndrome and the cross-scale impact from individual hosts to ecosystems. Collectively, this research highlights how early pathogen detection and quantification of host impacts has accelerated the understanding of this newly emerging infectious disease.


Assuntos
Ascomicetos , Quirópteros/microbiologia , Doenças Transmissíveis Emergentes/veterinária , Dermatomicoses/veterinária , Ecossistema , Animais , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/mortalidade , Dermatomicoses/mortalidade
11.
Nat Commun ; 12(1): 166, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420005

RESUMO

Habitat alteration can influence suitability, creating ecological traps where habitat preference and fitness are mismatched. Despite their importance, ecological traps are notoriously difficult to identify and their impact on host-pathogen dynamics remains largely unexplored. Here we assess individual bat survival and habitat preferences in the midwestern United States before, during, and after the invasion of the fungal pathogen that causes white-nose syndrome. Despite strong selection pressures, most hosts continued to select habitats where disease severity was highest and survival was lowest, causing continued population declines. However, some individuals used refugia where survival was higher. Over time, a higher proportion of the total population used refugia than before pathogen arrival. Our results demonstrate that host preferences for habitats with high disease-induced mortality can create ecological traps that threaten populations, even in the presence of accessible refugia.


Assuntos
Doenças dos Animais , Quirópteros , Ecossistema , Sobrevida , Doenças dos Animais/microbiologia , Doenças dos Animais/mortalidade , Animais , Ascomicetos , Quirópteros/microbiologia , Conservação dos Recursos Naturais , Fungos/patogenicidade , Michigan , Nariz , Dinâmica Populacional , Temperatura , Wisconsin
12.
Proc Natl Acad Sci U S A ; 117(13): 7255-7262, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179668

RESUMO

Disease outbreaks and pathogen introductions can have significant effects on host populations, and the ability of pathogens to persist in the environment can exacerbate disease impacts by fueling sustained transmission, seasonal epidemics, and repeated spillover events. While theory suggests that the presence of an environmental reservoir increases the risk of host declines and threat of extinction, the influence of reservoir dynamics on transmission and population impacts remains poorly described. Here we show that the extent of the environmental reservoir explains broad patterns of host infection and the severity of disease impacts of a virulent pathogen. We examined reservoir and host infection dynamics and the resulting impacts of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome, in 39 species of bats at 101 sites across the globe. Lower levels of pathogen in the environment consistently corresponded to delayed infection of hosts, fewer and less severe infections, and reduced population impacts. In contrast, an extensive and persistent environmental reservoir led to early and widespread infections and severe population declines. These results suggest that continental differences in the persistence or decay of P. destructans in the environment altered infection patterns in bats and influenced whether host populations were stable or experienced severe declines from this disease. Quantifying the impact of the environmental reservoir on disease dynamics can provide specific targets for reducing pathogen levels in the environment to prevent or control future epidemics.


Assuntos
Quirópteros/microbiologia , Reservatórios de Doenças/microbiologia , Micoses/epidemiologia , Animais , Ascomicetos/patogenicidade , Epidemias , Hibernação , Micoses/microbiologia , Nariz/microbiologia , Doenças Nasais/epidemiologia , Doenças Nasais/microbiologia , Dinâmica Populacional , Estações do Ano
13.
J Med Entomol ; 56(6): 1467-1474, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31549720

RESUMO

West Nile virus (WNV) was first identified in North America almost 20 yr ago. In that time, WNV has crossed the continent and established enzootic transmission cycles, resulting in intermittent outbreaks of human disease that have largely been linked with climatic variables and waning avian seroprevalence. During the transcontinental dissemination of WNV, the original genotype has been displaced by two principal extant genotypes which contain an envelope mutation that has been associated with enhanced vector competence by Culex pipiens L. (Diptera: Culicidae) and Culex tarsalis Coquillett vectors. Analyses of retrospective avian host competence data generated using the founding NY99 genotype strain have demonstrated a steady reduction in viremias of house sparrows over time. Reciprocally, the current genotype strains WN02 and SW03 have demonstrated an inverse correlation between house sparrow viremia magnitude and the time since isolation. These data collectively indicate that WNV has evolved for increased avian viremia while house sparrows have evolved resistance to the virus such that the relative host competence has remained constant. Intrahost analyses of WNV evolution demonstrate that selection pressures are avian species-specific and purifying selection is greater in individual birds compared with individual mosquitoes, suggesting that the avian adaptive and/or innate immune response may impose a selection pressure on WNV. Phylogenomic, experimental evolutionary systems, and models that link viral evolution with climate, host, and vector competence studies will be needed to identify the relative effect of different selective and stochastic mechanisms on viral phenotypes and the capacity of newly evolved WNV genotypes for transmission in continuously changing landscapes.


Assuntos
Doenças das Aves/epidemiologia , Aves , Culicidae/virologia , Genoma Viral , Interações Hospedeiro-Patógeno , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/fisiologia , Animais , Doenças das Aves/virologia , Meio Ambiente , América do Norte , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/crescimento & desenvolvimento
14.
Sci Rep ; 9(1): 9158, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235813

RESUMO

Tools for reducing wildlife disease impacts are needed to conserve biodiversity. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in North American bat populations and threatens several species with extinction. Few tools exist for managers to reduce WNS impacts. We tested the efficacy of a probiotic bacterium, Pseudomonas fluorescens, to reduce impacts of WNS in two simultaneous experiments with caged and free-flying Myotis lucifugus bats at a mine in Wisconsin, USA. In the cage experiment there was no difference in survival between control and P. fluorescens-treated bats. However, body mass, not infection intensity, predicted mortality, suggesting that within-cage disturbance influenced the cage experiment. In the free-flying experiment, where bats were able to avoid conspecific disturbance, infection intensity predicted the date of emergence from the mine. In this experiment treatment with P. fluorescens increased apparent overwinter survival five-fold compared to the control group (from 8.4% to 46.2%) by delaying emergence of bats from the site by approximately 32 days. These results suggest that treatment of bats with P. fluorescens may substantially reduce WNS mortality, and, if used in combination with other interventions, could stop population declines.


Assuntos
Ascomicetos/fisiologia , Fenômenos Fisiológicos Bacterianos , Quirópteros/microbiologia , Probióticos/farmacologia , Animais
15.
Sci Rep ; 9(1): 3203, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824732

RESUMO

Understanding the causes of vaccine failure is important for predicting disease dynamics in vaccinated populations and planning disease interventions. Pathogen exposure dose and heterogeneity in host susceptibility have both been implicated as important factors that may reduce overall vaccine efficacy and cause vaccine failure. Here, we explore the effect of pathogen dose and heterogeneity in host susceptibility in reducing efficacy of vaccines. Using simulation-based methods, we find that increases in pathogen exposure dose decrease vaccine efficacy, but this effect is modified by heterogeneity in host susceptibility. In populations where the mode of vaccine action is highly polarized, vaccine efficacy decreases more slowly with exposure dose than in populations with less variable protection. We compared these theoretical results to empirical estimates from a systematic literature review of vaccines tested over multiple exposure doses. We found that few studies (nine of 5,389) tested vaccine protection against infection over multiple pathogen challenge doses, with seven studies demonstrating a decrease in vaccine efficacy with increasing exposure dose. Our research demonstrates that pathogen dose has potential to be an important determinant of vaccine failure, although the limited empirical data highlight a need for additional studies to test theoretical predictions on the plausibility of reduced host susceptibility and high pathogen dose as mechanisms responsible for reduced vaccine efficacy in high transmission settings.


Assuntos
Relação Dose-Resposta Imunológica , Modelos Teóricos , Vacinas/imunologia , Animais , Suscetibilidade a Doenças , Patos/virologia , Humanos , Camundongos , Resultado do Tratamento
16.
Nature ; 566(7742): E3, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30655630

RESUMO

In Fig. 3d this Letter, the R2 value should have been '0.19' instead of '0.66'; this has been corrected online.

17.
Nature ; 563(7733): 710-713, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30455422

RESUMO

Understanding host interactions that lead to pathogen transmission is fundamental to the prediction and control of epidemics1-5. Although the majority of transmissions often occurs within social groups6-9, the contribution of connections that bridge groups and species to pathogen dynamics is poorly understood10-12. These cryptic connections-which are often indirect or infrequent-provide transmission routes between otherwise disconnected individuals and may have a key role in large-scale outbreaks that span multiple populations or species. Here we quantify the importance of cryptic connections in disease dynamics by simultaneously characterizing social networks and tracing transmission dynamics of surrogate-pathogen epidemics through eight communities of bats. We then compared these data to the invasion of the fungal pathogen that causes white-nose syndrome, a recently emerged disease that is devastating North American bat populations13-15. We found that cryptic connections increased links between individuals and between species by an order of magnitude. Individuals were connected, on average, to less than two per cent of the population through direct contact and to only six per cent through shared groups. However, tracing surrogate-pathogen dynamics showed that each individual was connected to nearly fifteen per cent of the population, and revealed widespread transmission between solitarily roosting individuals as well as extensive contacts among species. Connections estimated from surrogate-pathogen epidemics, which include cryptic connections, explained three times as much variation in the transmission of the fungus that causes white-nose syndrome as did connections based on shared groups. These findings show how cryptic connections facilitate the community-wide spread of pathogens and can lead to explosive epidemics.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/microbiologia , Busca de Comunicante/veterinária , Transmissão de Doença Infecciosa/veterinária , Micoses/veterinária , Sistemas de Identificação Animal , Animais , Controle de Doenças Transmissíveis , Busca de Comunicante/métodos , Transmissão de Doença Infecciosa/estatística & dados numéricos , Poeira/análise , Hibernação , Humanos , Masculino , Micoses/epidemiologia , Micoses/microbiologia , Micoses/transmissão , Rede Social , Zoonoses/microbiologia , Zoonoses/transmissão
18.
mBio ; 8(6)2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162706

RESUMO

Heterogeneity in host susceptibility is a key determinant of infectious disease dynamics but is rarely accounted for in assessment of disease control measures. Understanding how susceptibility is distributed in populations, and how control measures change this distribution, is integral to predicting the course of epidemics with and without interventions. Using multiple experimental and modeling approaches, we show that rainbow trout have relatively homogeneous susceptibility to infection with infectious hematopoietic necrosis virus and that vaccination increases heterogeneity in susceptibility in a nearly all-or-nothing fashion. In a simple transmission model with an R0 of 2, the highly heterogeneous vaccine protection would cause a 35 percentage-point reduction in outbreak size over an intervention inducing homogenous protection at the same mean level. More broadly, these findings provide validation of methodology that can help to reduce biases in predictions of vaccine impact in natural settings and provide insight into how vaccination shapes population susceptibility.IMPORTANCE Differences among individuals influence transmission and spread of infectious diseases as well as the effectiveness of control measures. Control measures, such as vaccines, may provide leaky protection, protecting all hosts to an identical degree, or all-or-nothing protection, protecting some hosts completely while leaving others completely unprotected. This distinction can have a dramatic influence on disease dynamics, yet this distribution of protection is frequently unaccounted for in epidemiological models and estimates of vaccine efficacy. Here, we apply new methodology to experimentally examine host heterogeneity in susceptibility and mode of vaccine action as distinct components influencing disease outcome. Through multiple experiments and new modeling approaches, we show that the distribution of vaccine effects can be robustly estimated. These results offer new experimental and inferential methodology that can improve predictions of vaccine effectiveness and have broad applicability to human, wildlife, and ecosystem health.


Assuntos
Suscetibilidade a Doenças , Saúde da População , Vacinas , Animais , Doenças Transmissíveis/epidemiologia , Gerenciamento Clínico , Surtos de Doenças/prevenção & controle , Epidemias/prevenção & controle , Humanos , Modelos Teóricos , Vacinação , Potência de Vacina
19.
Ecology ; 98(3): 624-631, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27992970

RESUMO

Disease dynamics during pathogen invasion and establishment determine the impacts of disease on host populations and determine the mechanisms of host persistence. Temporal progression of prevalence and infection intensity illustrate whether tolerance, resistance, reduced transmission, or demographic compensation allow initially declining populations to persist. We measured infection dynamics of the fungal pathogen Pseudogymnoascus destructans that causes white-nose syndrome in bats by estimating pathogen prevalence and load in seven bat species at 167 hibernacula over a decade as the pathogen invaded, became established, and some host populations stabilized. Fungal loads increased rapidly and prevalence rose to nearly 100% at most sites within 2 yr of invasion in six of seven species. Prevalence and loads did not decline over time despite huge reductions in colony sizes, likely due to an extensive environmental reservoir. However, there was substantial variation in fungal load among sites with persisting colonies, suggesting that both tolerance and resistance developed at different sites in the same species. In contrast, one species disappeared from hibernacula within 3 yr of pathogen invasion. Variable host responses to pathogen invasion require different management strategies to prevent disease-induced extinction and to facilitate evolution of tolerance or resistance in persisting populations.


Assuntos
Ascomicetos/fisiologia , Quirópteros/microbiologia , Micoses/veterinária , Nariz/microbiologia , Animais , Micoses/epidemiologia , Prevalência
20.
Artigo em Inglês | MEDLINE | ID: mdl-27920389

RESUMO

Increases in anthropogenic movement have led to a rise in pathogen introductions and the emergence of infectious diseases in naive host communities worldwide. We combined empirical data and mathematical models to examine changes in disease dynamics in little brown bat (Myotis lucifugus) populations following the introduction of the emerging fungal pathogen Pseudogymnoascus destructans, which causes the disease white-nose syndrome. We found that infection intensity was much lower in persisting populations than in declining populations where the fungus has recently invaded. Fitted models indicate that this is most consistent with a reduction in the growth rate of the pathogen when fungal loads become high. The data are inconsistent with the evolution of tolerance or an overall reduced pathogen growth rate that might be caused by environmental factors. The existence of resistance in some persisting populations of little brown bats offers a glimmer of hope that a precipitously declining species will persist in the face of this deadly pathogen.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.


Assuntos
Ascomicetos/fisiologia , Quirópteros , Resistência à Doença , Micoses/veterinária , Animais , Illinois/epidemiologia , Modelos Biológicos , Micoses/epidemiologia , Micoses/imunologia , Micoses/microbiologia , New York/epidemiologia , Densidade Demográfica , Prevalência , Virginia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA