Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1385987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011475

RESUMO

Introduction: Chronic myelomonocytic leukemia (CMML) and myelodysplastic syndromes (MDS) with ring sideroblasts (RS) or SF3B1 mutation (MDS-RS/SF3B1) differ in many clinical features, but share others, such as anemia. RS and SF3B1 mutation can also be found in CMML. Methods: We compared CMML with and without RS/SF3B1 and MDS-RS/SF3B1 considering the criteria established by the 2022 World Health Organization classification. Results: A total of 815 patients were included (CMML, n=319, CMML-RS/SF3B1, n=172 and MDS-RS/SF3B1, n=324). The percentage of RS was ≥15% in almost all CMML-RS/SF3B1 patients (169, 98.3%) and most (125, 72.7%) showed peripheral blood monocyte counts between 0.5 and 0.9 x109/L and low risk prognostic categories. CMML-RS/SF3B1 differed significantly from classical CMML in the main clinical characteristics, whereas it resembled MDS-RS/SF3B1. At a molecular level, CMML and CMML-RS/SF3B1 had a significantly higher frequency of mutations in TET2 (mostly multi-hit) and ASXL1 (p=0.013) and CMML had a significantly lower frequency of DNMT3A and SF3B1 mutations compared to CMML/MDS-RS/SF3B1. Differences in the median overall survival among the three groups were statistically significant: 6.75 years (95% confidence interval [CI] 5.41-8.09) for CMML-RS/SF3B1 vs. 3.17 years (95% CI 2.56-3.79) for CMML vs. 16.47 years (NA) for MDS-RS/SF3B1, p<0.001. Regarding patients with CMML and MDS, both with SF3B1 mutation, survival did not significantly differ. CMML had a higher risk of transformation to acute myeloid leukemia (24% at 8 years, 95%CI 19%-30%). Discussion: CMML-RS/SF3B1 mutation resembles MDS-RS/SF3B1 in terms of phenotype and clearly differs from CMML. The presence of ≥15% RS and/or SF3B1 in CMML is associated with a low monocyte count. SF3B1 mutation clearly improves the prognosis of CMML.

2.
JCO Clin Cancer Inform ; 8: e2400008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38875514

RESUMO

PURPOSE: Rare cancers constitute over 20% of human neoplasms, often affecting patients with unmet medical needs. The development of effective classification and prognostication systems is crucial to improve the decision-making process and drive innovative treatment strategies. We have created and implemented MOSAIC, an artificial intelligence (AI)-based framework designed for multimodal analysis, classification, and personalized prognostic assessment in rare cancers. Clinical validation was performed on myelodysplastic syndrome (MDS), a rare hematologic cancer with clinical and genomic heterogeneities. METHODS: We analyzed 4,427 patients with MDS divided into training and validation cohorts. Deep learning methods were applied to integrate and impute clinical/genomic features. Clustering was performed by combining Uniform Manifold Approximation and Projection for Dimension Reduction + Hierarchical Density-Based Spatial Clustering of Applications with Noise (UMAP + HDBSCAN) methods, compared with the conventional Hierarchical Dirichlet Process (HDP). Linear and AI-based nonlinear approaches were compared for survival prediction. Explainable AI (Shapley Additive Explanations approach [SHAP]) and federated learning were used to improve the interpretation and the performance of the clinical models, integrating them into distributed infrastructure. RESULTS: UMAP + HDBSCAN clustering obtained a more granular patient stratification, achieving a higher average silhouette coefficient (0.16) with respect to HDP (0.01) and higher balanced accuracy in cluster classification by Random Forest (92.7% ± 1.3% and 85.8% ± 0.8%). AI methods for survival prediction outperform conventional statistical techniques and the reference prognostic tool for MDS. Nonlinear Gradient Boosting Survival stands in the internal (Concordance-Index [C-Index], 0.77; SD, 0.01) and external validation (C-Index, 0.74; SD, 0.02). SHAP analysis revealed that similar features drove patients' subgroups and outcomes in both training and validation cohorts. Federated implementation improved the accuracy of developed models. CONCLUSION: MOSAIC provides an explainable and robust framework to optimize classification and prognostic assessment of rare cancers. AI-based approaches demonstrated superior accuracy in capturing genomic similarities and providing individual prognostic information compared with conventional statistical methods. Its federated implementation ensures broad clinical application, guaranteeing high performance and data protection.


Assuntos
Inteligência Artificial , Medicina de Precisão , Humanos , Prognóstico , Medicina de Precisão/métodos , Feminino , Doenças Raras/classificação , Doenças Raras/genética , Doenças Raras/diagnóstico , Masculino , Aprendizado Profundo , Neoplasias/classificação , Neoplasias/genética , Neoplasias/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/classificação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Algoritmos , Pessoa de Meia-Idade , Idoso , Análise por Conglomerados
3.
JCO Clin Cancer Inform ; 8: e2300205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723213

RESUMO

PURPOSE: Decision about the optimal timing of a treatment procedure in patients with hematologic neoplasms is critical, especially for cellular therapies (most including allogeneic hematopoietic stem-cell transplantation [HSCT]). In the absence of evidence from randomized trials, real-world observational data become beneficial to study the effect of the treatment timing. In this study, a framework to estimate the expected outcome after an intervention in a time-to-event scenario is developed, with the aim of optimizing the timing in a personalized manner. METHODS: Retrospective real-world data are leveraged to emulate a target trial for treatment timing using multistate modeling and microsimulation. This case study focuses on myelodysplastic syndromes, serving as a prototype for rare cancers characterized by a heterogeneous clinical course and complex genomic background. A cohort of 7,118 patients treated according to conventional available treatments/evidence across Europe and United States is analyzed. The primary clinical objective is to determine the ideal timing for HSCT, the only curative option for these patients. RESULTS: This analysis enabled us to identify the most appropriate time frames for HSCT on the basis of each patient's unique profile, defined by a combination relevant patients' characteristics. CONCLUSION: The developed methodology offers a structured framework to address a relevant clinical issue in the field of hematology. It makes several valuable contributions: (1) novel insights into how to develop decision models to identify the most favorable HSCT timing, (2) evidence to inform clinical decisions in a real-world context, and (3) the incorporation of complex information into decision making. This framework can be applied to provide medical insights for clinical issues that cannot be adequately addressed through randomized clinical trials.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Medicina de Precisão , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Neoplasias Hematológicas/terapia , Transplante Homólogo/métodos , Masculino , Pessoa de Meia-Idade , Feminino , Medicina de Precisão/métodos , Adulto , Idoso , Estudos Retrospectivos , Síndromes Mielodisplásicas/terapia , Adulto Jovem
4.
J Clin Oncol ; 42(24): 2873-2886, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723212

RESUMO

PURPOSE: Allogeneic hematopoietic stem-cell transplantation (HSCT) is the only potentially curative treatment for patients with myelodysplastic syndromes (MDS). Several issues must be considered when evaluating the benefits and risks of HSCT for patients with MDS, with the timing of transplantation being a crucial question. Here, we aimed to develop and validate a decision support system to define the optimal timing of HSCT for patients with MDS on the basis of clinical and genomic information as provided by the Molecular International Prognostic Scoring System (IPSS-M). PATIENTS AND METHODS: We studied a retrospective population of 7,118 patients, stratified into training and validation cohorts. A decision strategy was built to estimate the average survival over an 8-year time horizon (restricted mean survival time [RMST]) for each combination of clinical and genomic covariates and to determine the optimal transplantation policy by comparing different strategies. RESULTS: Under an IPSS-M based policy, patients with either low and moderate-low risk benefited from a delayed transplantation policy, whereas in those belonging to moderately high-, high- and very high-risk categories, immediate transplantation was associated with a prolonged life expectancy (RMST). Modeling decision analysis on IPSS-M versus conventional Revised IPSS (IPSS-R) changed the transplantation policy in a significant proportion of patients (15% of patient candidate to be immediately transplanted under an IPSS-R-based policy would benefit from a delayed strategy by IPSS-M, whereas 19% of candidates to delayed transplantation by IPSS-R would benefit from immediate HSCT by IPSS-M), resulting in a significant gain-in-life expectancy under an IPSS-M-based policy (P = .001). CONCLUSION: These results provide evidence for the clinical relevance of including genomic features into the transplantation decision making process, allowing personalizing the hazards and effectiveness of HSCT in patients with MDS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas , Transplante Homólogo , Humanos , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Feminino , Idoso , Adulto , Fatores de Tempo , Sistemas de Apoio a Decisões Clínicas , Genômica , Técnicas de Apoio para a Decisão , Medição de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA