Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063013

RESUMO

Ischemic stroke is a leading cause of disability worldwide. While much of post-stroke recovery is focused on physical rehabilitation, post-stroke dementia (PSD) is also a significant contributor to poor functional outcomes. Predictive tools to identify stroke survivors at risk for the development of PSD are limited to brief screening cognitive tests. Emerging biochemical, genetic, and neuroimaging biomarkers are being investigated in an effort to unveil better indicators of PSD. Additionally, acetylcholinesterase inhibitors, NMDA receptor antagonists, dopamine receptor agonists, antidepressants, and cognitive rehabilitation are current therapeutic options for PSD. Focusing on the chronic sequelae of stroke that impair neuroplasticity highlights the need for continued investigative trials to better assess functional outcomes in treatments targeted for PSD.


Assuntos
Biomarcadores , Demência , AVC Isquêmico , Humanos , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Demência/etiologia , Demência/metabolismo
2.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071434

RESUMO

In the last decade, activity-dependent strategies for labelling multiple immediate early gene (IEG) ensembles in mice have generated unprecedented insight into the mechanisms of memory encoding, storage, and retrieval. However, few strategies exist for brain-wide mapping of multiple ensembles, including their overlapping population, and none incorporate capabilities for downstream network analysis. Here, we introduce a scalable workflow to analyze traditionally coronally-sectioned datasets produced by activity-dependent tagging systems. Intrinsic to this pipeline is simple multi-ensemble atlas registration and statistical testing in R (SMARTR), an R package which wraps mapping capabilities with functions for statistical analysis and network visualization. We demonstrate the versatility of SMARTR by mapping the ensembles underlying the acquisition and expression of learned helplessness (LH), a robust stress model. Applying network analysis, we find that exposure to inescapable shock (IS), compared to context training (CT), results in decreased centrality of regions engaged in spatial and contextual processing and higher influence of regions involved in somatosensory and affective processing. During LH expression, the substantia nigra emerges as a highly influential region which shows a functional reversal following IS, indicating a possible regulatory function of motor activity during helplessness. We also report that IS results in a robust decrease in reactivation activity across a number of cortical, hippocampal, and amygdalar regions, indicating suppression of ensemble reactivation may be a neurobiological signature of LH. These results highlight the emergent insights uniquely garnered by applying our analysis approach to multiple ensemble datasets and demonstrate the strength of our workflow as a hypothesis-generating toolkit.

3.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503264

RESUMO

INTRODUCTION: Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms. METHODS: To gain mechanistic insight into how anxiety impacts AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity utilizing the ArcCreERT2 x enhanced yellow fluorescent protein (eYFP) x APP/PS1 (AD) mice. The ADNI dataset was used to determine the impact of anxiety on AD progression in human subjects. RESULTS: Female AD mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control (Ctrl) mice and male mice. Brain-wide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in AD mice. Sex-specific memory trace changes were observed; female AD mice exhibited impaired memory traces in dorsal CA3 (dCA3), while male AD mice exhibited impaired memory traces in the dorsal dentate gyrus (dDG). In the ADNI dataset, anxiety predicted transition to dementia. Female subjects positive for anxiety and amyloid transitioned more quickly to dementia than male subjects. CONCLUSIONS: While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that AD network dysfunction is sexually dimorphic, and that personalized medicine may benefit male and female AD patients rather than a one size fits all approach.

4.
Biol Psychiatry ; 89(12): 1150-1161, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766406

RESUMO

BACKGROUND: Posttraumatic stress disorder can develop after a traumatic event and results in heightened, inappropriate fear and anxiety. Although approximately 8% of the U.S. population is affected by posttraumatic stress disorder, only two drugs have been approved by the Food and Drug Administration to treat it, both with limited efficacy. Propranolol, a nonselective ß-adrenergic antagonist, has shown efficacy in decreasing exaggerated fear, and there has been renewed interest in using it to treat fear disorders. METHODS: Here, we sought to determine the mechanisms by which propranolol attenuates fear by utilizing an activity-dependent tagging system, ArcCreERT2 x eYFP mice. 129S6/SvEv mice were administered a 4-shock contextual fear conditioning paradigm followed by immediate or delayed context reexposures. Saline or propranolol was administered either before or after the first context reexposure. To quantify hippocampal, prefrontal, and amygdalar memory traces, ArcCreERT2 x eYFP mice were administered a delayed context reexposure with either a saline or propranolol injection before context reexposure. RESULTS: Propranolol decreased fear expression only when administered before a delayed context reexposure. Fear memory traces were affected in the dorsal dentate gyrus and basolateral amygdala after propranolol administration in the ArcCreERT2 x eYFP mice. Propranolol acutely altered functional connectivity between the hippocampal, cortical, and amygdalar regions. CONCLUSIONS: These data indicate that propranolol may decrease fear expression by altering network-correlated activity and by weakening the reactivation of the initial traumatic memory trace. This work contributes to the understanding of noradrenergic drugs as therapeutic aids for patients with posttraumatic stress disorder.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Propranolol , Tonsila do Cerebelo , Animais , Medo , Humanos , Memória , Camundongos , Propranolol/farmacologia
5.
Hippocampus ; 28(7): 523-535, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29663578

RESUMO

Recent genetic tools have allowed researchers to visualize and manipulate memory traces (i.e., engrams) in small brain regions. However, the ultimate goal is to visualize memory traces across the entire brain in order to better understand how memories are stored in neural networks and how multiple memories may coexist. Intact tissue clearing and imaging is a new and rapidly growing area of focus that could accomplish this task. Here, we utilized the leading protocols for whole-brain clearing and applied them to the ArcCreERT2 mice, a murine line that allows for the indelible labeling of memory traces. We found that CLARITY and PACT greatly distorted the tissue, and iDISCO quenched enhanced yellow fluorescent protein (EYFP) fluorescence and hindered immunolabeling. Alternative clearing solutions, such as tert-Butanol, circumvented these harmful effects, but still did not permit whole-brain immunolabeling. CUBIC and CUBIC with Reagent-1A produced improved antibody penetration and preserved EYFP fluorescence, but also did not allow for whole-brain memory trace visualization. Modification of CUBIC with Reagent-1A resulted in EYFP fluorescence preservation and immunolabeling of the immediate early gene (IEG) Arc in deep brain areas; however, optimized memory trace labeling still required tissue slicing into mm-thick tissue sections. In summary, our data show that CUBIC with Reagent-1A* is the ideal method for reproducible clearing and immunolabeling for the visualization of memory traces in mm-thick tissue sections from ArcCreERT2 mice.


Assuntos
Complexo Relacionado com a AIDS/metabolismo , Encéfalo/metabolismo , Memória/fisiologia , Complexo Relacionado com a AIDS/genética , Animais , Encéfalo/anatomia & histologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Condicionamento Operante , Antagonistas de Estrogênios/farmacologia , Medo , Imuno-Histoquímica , Indicadores e Reagentes/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
6.
J R Soc Interface ; 10(89): 20130726, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24068179

RESUMO

Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues.


Assuntos
Embrião não Mamífero/citologia , Modelos Biológicos , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Comunicação Celular , Embrião não Mamífero/ultraestrutura , Desenvolvimento Embrionário , Dinâmica não Linear , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA