Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617277

RESUMO

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

2.
Curr Biol ; 34(2): 260-272.e7, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38086388

RESUMO

Cytoskeletal rearrangements and crosstalk between microtubules and actin filaments are vital for living organisms. Recently, an abundantly present microtubule polymerase, CKAP5 (XMAP215 homolog), has been reported to play a role in mediating crosstalk between microtubules and actin filaments in the neuronal growth cones. However, the molecular mechanism of this process is unknown. Here, we demonstrate, in a reconstituted system, that CKAP5 enables the formation of persistent actin bundles templated by dynamically instable microtubules. We explain the templating by the difference in CKAP5 binding to microtubules and actin filaments. Binding to the microtubule lattice with higher affinity, CKAP5 enables the formation of actin bundles exclusively on the microtubule lattice, at CKAP5 concentrations insufficient to support any actin bundling in the absence of microtubules. Strikingly, when the microtubules depolymerize, actin bundles prevail at the positions predetermined by the microtubules. We propose that the local abundance of available CKAP5-binding sites in actin bundles allows the retention of CKAP5, resulting in persisting actin bundles. In line with our observations, we found that reducing CKAP5 levels in vivo results in a decrease in actin-microtubule co-localization in growth cones and specifically decreases actin intensity at microtubule plus ends. This readily suggests a mechanism explaining how exploratory microtubules set the positions of actin bundles, for example, in cytoskeleton-rich neuronal growth cones.


Assuntos
Actinas , Microtúbulos , Actinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo
3.
Dev Cell ; 59(2): 199-210.e11, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38159567

RESUMO

Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.


Assuntos
Axonema , Caenorhabditis elegans , Animais , Camundongos , Axonema/metabolismo , Axonema/ultraestrutura , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Mamíferos , Microtúbulos/metabolismo , Movimento , Tubulina (Proteína)/metabolismo
4.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865107

RESUMO

Microtubule doublets (MTDs) are a well conserved compound microtubule structure found primarily in cilia. However, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we characterize microtubule-associated protein 9 (MAP9) as a novel MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. Loss of MAPH-9 caused ultrastructural MTD defects, dysregulated axonemal motor velocity, and perturbed cilia function. As we found that the mammalian ortholog MAP9 localized to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in supporting the structure of axonemal MTDs and regulating ciliary motors.

5.
EMBO J ; 42(5): e112101, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636822

RESUMO

Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive. Here, using in-vitro reconstitution, we determine how polyglutamylation generated by the two predominant neuronal polyglutamylases, TTLL1 and TTLL7, specifically modulates the activities of three major microtubule interactors: the microtubule-associated protein Tau, the microtubule-severing enzyme katanin and the molecular motor kinesin-1. We demonstrate that the unique modification patterns generated by TTLL1 and TTLL7 differentially impact those three effector proteins, thus allowing for their selective regulation. Given that our experiments were performed with brain tubulin from mouse models in which physiological levels and patterns of polyglutamylation were altered by the genetic knockout of the main modifying enzymes, our quantitative measurements provide direct mechanistic insight into how polyglutamylation could selectively control microtubule interactions in neurons.


Assuntos
Tubulina (Proteína) , Animais , Camundongos , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Peptídeo Sintases , Proteínas Associadas aos Microtúbulos
6.
Sci Rep ; 12(1): 18911, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344576

RESUMO

Microfluidics systems can be fabricated in various ways using original silicon glass systems, with easy Si processing and surface modifications for subsequent applications such as cell seeding and their study. Fluorescent imaging of cells became a standard technique for the investigation of cell behavior. Unfortunately, high sensitivity fluorescent imaging, e.g., using total internal reflection fluorescence (TIRF) microscopy, is problematic in these microfluidic systems because the uneven surfaces of the silicon channels' bottoms affect light penetration through the optical filters. In this work, we study the nature of the phenomenon, finding that the problem can be rectified by using a silicon-on-insulator (SOI) substrate, defining the channel depth by the thickness of the top Si layer, and halting the etching at the buried SiO2 layer. Then the fluorescent background signal drops by = 5 times, corresponding to the limit of detection drop from = 0.05 mM to = 50 nM of fluorescein. We demonstrate the importance of a flat surface using TIRF-based single-molecule detection, improving the signal to a noise ratio more than 18 times compared to a conventional Si wafer. Overall, using very high-quality SOI substrates pays off, as it improves the fluorescence image quality due to the increase in signal-to-noise ratio. Concerning the cost of microfluidic device fabrication-design, mask fabrication, wafer processing, and device testing-the initial SOI wafer cost is marginal, and using it improves the system performance.


Assuntos
Microfluídica , Silício , Silício/química , Razão Sinal-Ruído , Dióxido de Silício , Nanotecnologia/métodos
7.
Nat Chem Biol ; 18(11): 1224-1235, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35996000

RESUMO

Tau is an intrinsically disordered microtubule-associated protein (MAP) implicated in neurodegenerative disease. On microtubules, tau molecules segregate into two kinetically distinct phases, consisting of either independently diffusing molecules or interacting molecules that form cohesive 'envelopes' around microtubules. Envelopes differentially regulate lattice accessibility for other MAPs, but the mechanism of envelope formation remains unclear. Here we find that tau envelopes form cooperatively, locally altering the spacing of tubulin dimers within the microtubule lattice. Envelope formation compacted the underlying lattice, whereas lattice extension induced tau envelope disassembly. Investigating other members of the tau family, we find that MAP2 similarly forms envelopes governed by lattice spacing, whereas MAP4 cannot. Envelopes differentially biased motor protein movement, suggesting that tau family members could spatially divide the microtubule surface into functionally distinct regions. We conclude that the interdependent allostery between lattice spacing and cooperative envelope formation provides the molecular basis for spatial regulation of microtubule-based processes by tau and MAP2.


Assuntos
Doenças Neurodegenerativas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tubulina (Proteína)/metabolismo , Doenças Neurodegenerativas/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo
8.
Curr Biol ; 32(11): R518-R520, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671724

RESUMO

Kinesin-1 is a typical microtubule-associated molecular motor that drives cargo transport in the cell. New work now shows that small changes in its structure can bring out unforeseen powers in this motor, turning it into a microtubule destroyer and highlighting the interdependencies between the biological motor and its track.


Assuntos
Cinesinas , Microtúbulos , Transporte Biológico , Microtúbulos/metabolismo
9.
Methods Mol Biol ; 2431: 533-546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412296

RESUMO

Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.


Assuntos
Cinesinas , Microtúbulos , Transporte Biológico , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Organelas
10.
Sci Rep ; 12(1): 2462, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165315

RESUMO

Pulsed electric field (PEF) technology is promising for the manipulation of biomolecular components and has potential applications in biomedicine and bionanotechnology. Microtubules, nanoscopic tubular structures self-assembled from protein tubulin, serve as important components in basic cellular processes as well as in engineered biomolecular nanosystems. Recent studies in cell-based models have demonstrated that PEF affects the cytoskeleton, including microtubules. However, the direct effects of PEF on microtubules are not clear. In this work, we developed a lab-on-a-chip platform integrated with a total internal reflection fluorescence microscope system to elucidate the PEF effects on a microtubules network mimicking the cell-like density of microtubules. The designed platform enables the delivery of short (microsecond-scale), high-field-strength ([Formula: see text] 25 kV/cm) electric pulses far from the electrode/electrolyte interface. We showed that microsecond PEF is capable of overcoming the non-covalent microtubule bonding force to the substrate and translocating the microtubules. This microsecond PEF effect combined with macromolecular crowding led to aggregation of microtubules. Our results expand the toolbox of bioelectronics technologies and electromagnetic tools for the manipulation of biomolecular nanoscopic systems and contribute to the understanding of microsecond PEF effects on a microtubule cytoskeleton.

11.
Small Methods ; 5(4): e2000985, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927839

RESUMO

Microtubules are cytoskeletal polymers of tubulin dimers assembled into protofilaments that constitute nanotubes undergoing periods of assembly and disassembly. Static electron micrographs suggest a structural transition of straight protofilaments into curved ones occurring at the tips of disassembling microtubules. However, these structural transitions have never been observed and the process of microtubule disassembly thus remains unclear. Here, label-free optical microscopy capable of selective imaging of the transient structural changes of protofilaments at the tip of a disassembling microtubule is introduced. Upon induced disassembly, the transition of ordered protofilaments into a disordered conformation is resolved at the tip of the microtubule. Imaging the unbinding of individual tubulin oligomers from the microtubule tip reveals transient pauses and relapses in the disassembly, concurrent with increased organization of protofilament segments at the microtubule tip. These findings show that microtubule disassembly is a discrete process and suggest a stochastic mechanism of switching from the disassembly to the assembly phase.


Assuntos
Microscopia/métodos , Microtúbulos/química , Polímeros/análise , Conformação Proteica , Tubulina (Proteína)
12.
Small Methods ; 5(10): e2100370, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34927934

RESUMO

Diffusion is the most fundamental mode of protein translocation within cells. Confined diffusion of proteins along the electrostatic potential constituted by the surface of microtubules, although modeled meticulously in molecular dynamics simulations, has not been experimentally observed in real-time. Here, interferometric scattering microscopy is used to directly visualize the movement of the microtubule-associated protein Ase1 along the microtubule surface at nanometer and microsecond resolution. Millisecond confinements of Ase1 and fast leaps between these positions of dwelling preferentially occurring along the microtubule protofilaments are resolved, revealing Ase1's mode of diffusive translocation along the microtubule's periodic surface. The derived interaction potential closely matches the tubulin-dimer periodicity and the distribution of the electrostatic potential on the microtubule lattice. It is anticipated that mapping the interaction landscapes for different proteins on microtubules, finding plausible energetic barriers of different positioning and heights, can provide valuable insights into regulating the dynamics of essential cytoskeletal processes, such as intracellular cargo trafficking, cell division, and morphogenesis, all of which rely on diffusive translocation of proteins along microtubules.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Divisão Celular , Simulação de Dinâmica Molecular , Domínios Proteicos , Transporte Proteico , Imagem Individual de Molécula , Análise Espaço-Temporal , Suínos
13.
Nat Commun ; 12(1): 4595, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321459

RESUMO

Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.


Assuntos
Actinas/metabolismo , Proteínas Contráteis/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Divisão Celular , Proteínas Contráteis/genética , Citocinese , Drosophila melanogaster/metabolismo , Humanos , Proteínas dos Microfilamentos
14.
Nat Commun ; 12(1): 2921, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012021

RESUMO

Spatial light modulators have become an essential tool for advanced microscopy, enabling breakthroughs in 3D, phase, and super-resolution imaging. However, continuous spatial-light modulation that is capable of capturing sub-millisecond microscopic motion without diffraction artifacts and polarization dependence is challenging. Here we present a photothermal spatial light modulator (PT-SLM) enabling fast phase imaging for nanoscopic 3D reconstruction. The PT-SLM can generate a step-like wavefront change, free of diffraction artifacts, with a high transmittance and a modulation efficiency independent of light polarization. We achieve a phase-shift > π and a response time as short as 70 µs with a theoretical limit in the sub microsecond range. We used the PT-SLM to perform quantitative phase imaging of sub-diffractional species to decipher the 3D nanoscopic displacement of microtubules and study the trajectory of a diffusive microtubule-associated protein, providing insights into the mechanism of protein navigation through a complex microtubule network.


Assuntos
Microscopia de Contraste de Fase/métodos , Proteínas de Ciclo Celular/metabolismo , Simulação por Computador , Ouro , Humanos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/estatística & dados numéricos , Luz , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia de Interferência/métodos , Microscopia de Interferência/estatística & dados numéricos , Microscopia de Contraste de Fase/estatística & dados numéricos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Nanotecnologia , Nanotubos/ultraestrutura , Fenômenos Ópticos , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Tempo , Tubulina (Proteína)/metabolismo
15.
Curr Biol ; 30(17): 3342-3351.e5, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32649913

RESUMO

In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.


Assuntos
Citocinese , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Oncogênicas/metabolismo , Fuso Acromático/fisiologia , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Cinesinas/química , Cinesinas/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Ligação Proteica
16.
Nat Commun ; 11(1): 3123, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561740

RESUMO

Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/isolamento & purificação , Animais , Linhagem Celular Tumoral , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinesinas/genética , Cinesinas/isolamento & purificação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
17.
J Cell Sci ; 133(12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540925

RESUMO

The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.


Assuntos
Citoesqueleto , Microtúbulos , Movimento Celular , Proteínas Motores Moleculares , Proteínas
18.
Curr Biol ; 30(6): R270-R272, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32208151

RESUMO

A new study has uncovered three mechanisms of motor-independent membrane tubulation. In vitro reconstitution using a minimal set of proteins shows that the accumulation of crosslinking proteins at the membrane-microtubule interface is sufficient to drive tubulation, which is enhanced by coupling with microtubule dynamics.


Assuntos
Microtúbulos , Proteínas
19.
Viruses ; 12(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085463

RESUMO

Viruses have evolved mechanisms to manipulate microtubules (MTs) for the efficient realization of their replication programs. Studying the mechanisms of replication of mouse polyomavirus (MPyV), we observed previously that in the late phase of infection, a considerable amount of the main structural protein, VP1, remains in the cytoplasm associated with hyperacetylated microtubules. VP1-microtubule interactions resulted in blocking the cell cycle in the G2/M phase. We are interested in the mechanism leading to microtubule hyperacetylation and stabilization and the roles of tubulin acetyltransferase 1 (αTAT1) and deacetylase histone deacetylase 6 (HDAC6) and VP1 in this mechanism. Therefore, HDAC6 inhibition assays, αTAT1 knock out cell infections, in situ cell fractionation, and confocal and TIRF microscopy were used. The experiments revealed that the direct interaction of isolated microtubules and VP1 results in MT stabilization and a restriction of their dynamics. VP1 leads to an increase in polymerized tubulin in cells, thus favoring αTAT1 activity. The acetylation status of MTs did not affect MPyV infection. However, the stabilization of MTs by VP1 in the late phase of infection may compensate for the previously described cytoskeleton destabilization by MPyV early gene products and is important for the observed inhibition of the G2→M transition of infected cells to prolong the S phase.


Assuntos
Acetiltransferases/genética , Proteínas do Capsídeo/genética , Interações entre Hospedeiro e Microrganismos , Microtúbulos/metabolismo , Polyomavirus/metabolismo , Acetilação , Acetiltransferases/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Ciclo Celular , Linhagem Celular , Citoplasma/metabolismo , Fibroblastos/virologia , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Camundongos , Microtúbulos/virologia , Polyomavirus/genética , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
20.
Nat Cell Biol ; 21(9): 1086-1092, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31481789

RESUMO

Tau is an intrinsically disordered protein, which diffuses on microtubules1. In neurodegenerative diseases, collectively termed tauopathies, malfunction of tau and its detachment from axonal microtubules are correlated with axonal degeneration2. Tau can protect microtubules from microtubule-degrading enzymes such as katanin3. However, how tau carries out this regulatory function is still unclear. Here, using in vitro reconstitution, we show that tau molecules on microtubules cooperatively form cohesive islands that are kinetically distinct from tau molecules that individually diffuse on microtubules. Dependent on the tau concentration in solution, the islands reversibly grow or shrink by addition or release of tau molecules at their boundaries. Shielding microtubules from kinesin-1 motors and katanin, the islands exhibit regulatory qualities distinct from a comparably dense layer of diffusible tau. Superprocessive kinesin-8 motors penetrate the islands and cause their disassembly. Our results reveal a microtubule-dependent phase of tau that constitutes an adaptable protective layer on the microtubule surface. We anticipate that other intrinsically disordered axonal proteins display a similar cooperative behaviour and potentially compete with tau in regulating access to the microtubule surface.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Katanina/metabolismo , Cinética , Doenças Neurodegenerativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA