Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
NMR Biomed ; 37(2): e5056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37839823

RESUMO

γ-Aminobutyric acid (GABA), as the primary inhibitory neurotransmitter, is extremely important for maintaining healthy brain function, and deviations from GABA homeostasis are related to various brain diseases. Short-echo-time (short-TE) proton MR spectroscopy (1 H-MRS) has been employed to measure GABA concentration from various human brain regions at high magnetic fields. The aim of this study was to investigate the effect of spectral linewidth on GABA quantification and explore the application of an optimized basis-set preparation approach using a spectral-linewidth-matched (LM) basis set in LCModel to improve the reproducibility of GABA quantification from short-TE 1 H-MRS. In contrast to the fixed-linewidth basis-set approach, the LM basis-set preparation approach, where all metabolite basis spectra were simulated with a linewidth 4 Hz narrower than that of water, showed a smaller standard deviation of estimated GABA concentration from synthetic spectra with varying linewidths and lineshapes. The test-retest reproducibility was assessed by the mean within-subject coefficient of variation, which improved from 19.2% to 12.0% in the thalamus, from 27.9% to 14.9% in the motor cortex, and from 9.7% to 2.8% in the medial prefrontal cortex using LM basis sets at 7 T. We conclude that spectral linewidth has a large effect on GABA quantification from short-TE 1 H-MRS data and that using LM basis sets in LCModel can improve the reproducibility of GABA quantification.


Assuntos
Encéfalo , Prótons , Humanos , Reprodutibilidade dos Testes , Espectroscopia de Prótons por Ressonância Magnética/métodos , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Alzheimers Res Ther ; 15(1): 193, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936236

RESUMO

BACKGROUND: The pathological process of Alzheimer's disease (AD) typically takes decades from onset to clinical symptoms. Early brain changes in AD include MRI-measurable features such as altered functional connectivity (FC) and white matter degeneration. The ability of these features to discriminate between subjects without a diagnosis, or their prognostic value, is however not established. METHODS: The main trigger mechanism of AD is still debated, although impaired brain glucose metabolism is taking an increasingly central role. Here, we used a rat model of sporadic AD, based on impaired brain glucose metabolism induced by an intracerebroventricular injection of streptozotocin (STZ). We characterized alterations in FC and white matter microstructure longitudinally using functional and diffusion MRI. Those MRI-derived measures were used to classify STZ from control rats using machine learning, and the importance of each individual measure was quantified using explainable artificial intelligence methods. RESULTS: Overall, combining all the FC and white matter metrics in an ensemble way was the best strategy to discriminate STZ rats, with a consistent accuracy over 0.85. However, the best accuracy early on was achieved using white matter microstructure features, and later on using FC. This suggests that consistent damage in white matter in the STZ group might precede FC. For cross-timepoint prediction, microstructure features also had the highest performance while, in contrast, that of FC was reduced by its dynamic pattern which shifted from early hyperconnectivity to late hypoconnectivity. CONCLUSIONS: Our study highlights the MRI-derived measures that best discriminate STZ vs control rats early in the course of the disease, with potential translation to humans.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Ratos , Animais , Substância Branca/patologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Inteligência Artificial , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Glucose
3.
Mol Psychiatry ; 27(11): 4485-4501, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36224260

RESUMO

Mood disorders (MD) are a major burden on society as their biology remains poorly understood, challenging both diagnosis and therapy. Among many observed biological dysfunctions, homeostatic dysregulation, such as metabolic syndrome (MeS), shows considerable comorbidity with MD. Recently, CREB-regulated transcription coactivator 1 (CRTC1), a regulator of brain metabolism, was proposed as a promising factor to understand this relationship. Searching for imaging biomarkers and associating them with pathophysiological mechanisms using preclinical models can provide significant insight into these complex psychiatric diseases and help the development of personalized healthcare. Here, we used neuroimaging technologies to show that deletion of Crtc1 in mice leads to an imaging fingerprint of hippocampal metabolic impairment related to depressive-like behavior. By identifying a deficiency in hippocampal glucose metabolism as the underlying molecular/physiological origin of the markers, we could assign an energy-boosting mood-stabilizing treatment, ebselen, which rescued behavior and neuroimaging markers. Finally, our results point toward the GABAergic system as a potential therapeutic target for behavioral dysfunctions related to metabolic disorders. This study provides new insights on Crtc1's and MeS's relationship to MD and establishes depression-related markers with clinical potential.


Assuntos
Hipocampo , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hipocampo/metabolismo , Comportamento Animal/fisiologia , Depressão/genética , Depressão/metabolismo
4.
Anal Biochem ; 647: 114606, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35240109

RESUMO

Type C hepatic encephalopathy (HE) is a complex neuropsychiatric disorder occurring as a consequence of chronic liver disease. Alterations in energy metabolism have been suggested in type C HE, but in vivo studies on this matter remain sparse and have reported conflicting results. Here, we propose a novel preclinical 18F-FDG PET methodology to compute quantitative 3D maps of the regional cerebral metabolic rate of glucose (CMRglc) from a labelling steady-state PET image of the brain and an image-derived input function. This quantitative approach shows its strength when comparing groups of animals with divergent physiology, such as HE animals. PET CMRglc maps were registered to an atlas and the mean CMRglc from the hippocampus and the cerebellum were associated to the corresponding localized 1H MR spectroscopy acquisitions. This study provides for the first time local and quantitative information on both brain glucose uptake and neurometabolic profile alterations in a rat model of type C HE. A 2-fold lower brain glucose uptake, concomitant with an increase in brain glutamine and a decrease in the main osmolytes, was observed in the hippocampus and in the cerebellum. These novel findings are an important step towards new insights into energy metabolism in the pathophysiology of HE.


Assuntos
Encefalopatia Hepática , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Encefalopatia Hepática/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Ratos
5.
Magn Reson Med ; 86(5): 2384-2401, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34268821

RESUMO

PURPOSE: Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. METHODS: A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. RESULTS: A very stiff baseline (DKNTMN ≥ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. CONCLUSION: Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification.


Assuntos
Química Encefálica , Encéfalo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Substâncias Macromoleculares/metabolismo , Ratos
6.
Metabolites ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201777

RESUMO

Glucose is the primary fuel for the brain; its metabolism is linked with cerebral function. Different magnetic resonance spectroscopy (MRS) techniques are available to assess glucose metabolism, providing complementary information. Our first aim was to investigate the difference between hyperpolarized 13C-glucose MRS and non-hyperpolarized 2H-glucose MRS to interrogate cerebral glycolysis. Isoflurane anesthesia is commonly employed in preclinical MRS, but it affects cerebral hemodynamics and functional connectivity. A combination of low doses of isoflurane and medetomidine is routinely used in rodent fMRI and shows similar functional connectivity, as in awake animals. As glucose metabolism is tightly linked to neuronal activity, our second aim was to assess the impact of these two anesthetic conditions on the cerebral metabolism of glucose. Brain metabolism of hyperpolarized 13C-glucose and 2H-glucose was monitored in two groups of mice in a 9.4 T MRI system. We found that the very different duration and temporal resolution of the two techniques enable highlighting the different aspects in glucose metabolism. We demonstrate (by numerical simulations) that hyperpolarized 13C-glucose reports on de novo lactate synthesis and is sensitive to CMRGlc. We show that variations in cerebral glucose metabolism, under different anesthesia, are reflected differently in hyperpolarized and non-hyperpolarized X-nuclei glucose MRS.

7.
Sci Rep ; 11(1): 5771, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707647

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized 13C-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized 13C-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted "Warburg effect". However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Isótopos de Carbono/química , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Glucose/metabolismo , Glicólise , Imageamento por Ressonância Magnética , Aerobiose , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Linhagem Celular Tumoral , Humanos , Ácido Láctico/metabolismo , Metabolômica , Camundongos SCID , Ácido Pirúvico/metabolismo
8.
Metabolites ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445747

RESUMO

Glucose is a major energy fuel for the brain, however, less is known about specificities of its metabolism in distinct cerebral areas. Here we examined the regional differences in glucose utilization between the hypothalamus and hippocampus using in vivo indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) upon infusion of [1,6-13C2]glucose. Using a metabolic flux analysis with a 1-compartment mathematical model of brain metabolism, we report that compared to hippocampus, hypothalamus shows higher levels of aerobic glycolysis associated with a marked gamma-aminobutyric acid-ergic (GABAergic) and astrocytic metabolic dependence. In addition, our analysis suggests a higher rate of ATP production in hypothalamus that is accompanied by an excess of cytosolic nicotinamide adenine dinucleotide (NADH) production that does not fuel mitochondria via the malate-aspartate shuttle (MAS). In conclusion, our results reveal significant metabolic differences, which might be attributable to respective cell populations or functional features of both structures.

9.
J Cereb Blood Flow Metab ; 41(2): 282-297, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32151224

RESUMO

Hippocampus plays a critical role in linking brain energetics and behavior typically associated to stress exposure. In this study, we aimed to simultaneously assess excitatory and inhibitory neuronal metabolism in mouse hippocampus in vivo by applying 18FDG-PET and indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) at 14.1 T upon infusion of uniformly 13C-labeled glucose ([U-13C6]Glc). Improving the spectral fitting by taking into account variable decoupling efficiencies of [U-13C6]Glc and refining the compartmentalized model by including two γ-aminobutyric acid (GABA) pools permit us to evaluate the relative contributions of glutamatergic and GABAergic metabolism to total hippocampal neuroenergetics. We report that GABAergic activity accounts for ∼13% of total neurotransmission (VNT) and ∼27% of total neuronal TCA cycle (VTCA) in mouse hippocampus suggesting a higher VTCA/VNT ratio for inhibitory neurons compared to excitatory neurons. Finally, our results provide new strategies and tools for bringing forward the developments and applications of 13C-MRS in specific brain regions of small animals.


Assuntos
Química Encefálica/fisiologia , Glucose/metabolismo , Hipocampo/química , Animais , Masculino , Camundongos , Modelos Teóricos
10.
Neuroimage ; 225: 117498, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33164858

RESUMO

Brain glucose hypometabolism has been singled out as an important contributor and possibly main trigger to Alzheimer's disease (AD). Intracerebroventricular injections of streptozotocin (icv-STZ) cause brain glucose hypometabolism without systemic diabetes. Here, a first-time longitudinal study of brain glucose metabolism, functional connectivity and white matter microstructure was performed in icv-STZ rats using PET and MRI. Histological markers of pathology were tested at an advanced stage of disease. STZ rats exhibited altered functional connectivity and intra-axonal damage and demyelination in brain regions typical of AD, in a temporal pattern of acute injury, transient recovery/compensation and chronic degeneration. In the context of sustained glucose hypometabolism, these nonmonotonic trends - also reported in behavioral studies of this animal model as well as in human AD - suggest a compensatory mechanism, possibly recruiting ketone bodies, that allows a partial and temporary repair of brain structure and function. The early acute phase could thus become a valuable therapeutic window to strengthen the recovery phase and prevent or delay chronic degeneration, to be considered both in preclinical and clinical studies of AD. In conclusion, this work reveals the consequences of brain insulin resistance on structure and function, highlights signature nonmonotonic trajectories in their evolution and proposes potent MRI-derived biomarkers translatable to human AD and diabetic populations.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Fluordesoxiglucose F18 , Neuroimagem Funcional , Glucose/metabolismo , Injeções Intraventriculares , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/metabolismo , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Estreptozocina/toxicidade , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/fisiopatologia
11.
NMR Biomed ; 34(2): e4440, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140530

RESUMO

The present work aims to show the applicability of an analytical model for the optimisation of the STEAM sequence timing parameters for lactate detection at ultra high-field. The effects of the chemical shift displacement artefact on the J-modulated signal for a weakly-coupled spin system were considered in the three applied directions of field gradients and the product operator formalism was used to obtain expressions for the signal modulation in each compartment of the excited volume. The validity of this model was demonstrated experimentally at 7 T in a phantom and acquisitions with optimised parameters were performed on a healthy volunteer. The spectra acquired with TE = 144 ms with the optimised mixing time and TE = 288 ms showed easily detectable lactate peaks in the normal human brain. Additionally, the acquisition with the longer TE resulted in a spectrum with less lipid/macromolecular contamination. The simulations shown here demonstrated that the proposed analytical model is suitable for correctly predicting the resulting lactate signal. With the optimised parameters, it was possible to use a simple sequence with sufficient signal-to-noise ratio to reliably distinguish lactate from overlapping resonances in a healthy brain.


Assuntos
Ácido Láctico/análise , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Algoritmos , Artefatos , Humanos , Imagens de Fantasmas , Teoria Quântica
12.
NMR Biomed ; : e4347, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32808407

RESUMO

With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.

13.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32571479

RESUMO

Glucose utilization increases in tumors, a metabolic process that is observed clinically by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). However, is increased glucose uptake important for tumor cells, and which transporters are implicated in vivo? In a genetically-engineered mouse model of lung adenocarcinoma, we show that the deletion of only one highly expressed glucose transporter, Glut1 or Glut3, in cancer cells does not impair tumor growth, whereas their combined loss diminishes tumor development. 18F-FDG-PET analyses of tumors demonstrate that Glut1 and Glut3 loss decreases glucose uptake, which is mainly dependent on Glut1. Using 13C-glucose tracing with correlated nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy, we also report the presence of lamellar body-like organelles in tumor cells accumulating glucose-derived biomass, depending partially on Glut1. Our results demonstrate the requirement for two glucose transporters in lung adenocarcinoma, the dual blockade of which could reach therapeutic responses not achieved by individual targeting.


Assuntos
Adenocarcinoma de Pulmão/fisiopatologia , Deleção de Genes , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 2/genética , Glucose/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Fluordesoxiglucose F18/química , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tomografia por Emissão de Pósitrons , Espectrometria de Massa de Íon Secundário
14.
NMR Biomed ; 33(4): e4223, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31995265

RESUMO

Estimation of metabolic changes during neuronal activation represents a challenge for in vivo MRS, especially for metabolites with low concentration and signal overlap, such as lactate. In this work, we aimed to evaluate the feasibility of detecting lactate during brain activation using a long TE (144 ms) semi-LASER sequence at 7 T. 1H spectra were acquired on healthy volunteers ( N=6 ) during a paradigm with 15 min of visual stimulation. Outer-volume signals were further attenuated by the use of saturation slabs, and macromolecular signals in the vicinity of the inverted lactate peak were individually fitted with simulated Lorentzian peaks. All spectra were free of artefacts and highly reproducible across subjects. Lactate was accurately quantified with an average Cramér-Rao lower bound of 8%. Statistically significant ( P<0.05 , one-tailed t -test) increases in lactate ( ∼ 10%) and glutamate ( ∼ 3%) levels during stimulation were detected in the visual cortex. Lactate and glutamate changes were consistent with previous measurements. We demonstrated that quantification of a clear and non-contaminated lactate peak obtained with a long TE sequence has the potential of improving the accuracy of functional MRS studies targeting non-oxidative reaction pathways.


Assuntos
Encéfalo/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética , Adulto , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Metaboloma , Reprodutibilidade dos Testes , Fatores de Tempo
15.
NMR Biomed ; : e4325, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-33565219

RESUMO

In vivo MRS is a non-invasive measurement technique used not only in humans, but also in animal models using high-field magnets. MRS enables the measurement of metabolite concentrations as well as metabolic rates and their modifications in healthy animals and disease models. Such data open the way to a deeper understanding of the underlying biochemistry, related disturbances and mechanisms taking place during or prior to symptoms and tissue changes. In this work, we focus on the main preclinical 1H, 31P and 13C MRS approaches to study brain metabolism in rodent models, with the aim of providing general experts' consensus recommendations (animal models, anesthesia, data acquisition protocols). An overview of the main practical differences in preclinical compared with clinical MRS studies is presented, as well as the additional biochemical information that can be obtained in animal models in terms of metabolite concentrations and metabolic flux measurements. The properties of high-field preclinical MRS and the technical limitations are also described.

16.
ACS Chem Neurosci ; 9(11): 2554-2562, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29771492

RESUMO

The dynamics of l-lactate transport across the blood-brain barrier (BBB) and its cerebral metabolism are still subject to debate. We studied lactate uptake and intracellular metabolism in the mouse brain using hyperpolarized 13C magnetic resonance spectroscopy (MRS). Following the intravenous injection of hyperpolarized [1-13C]lactate, we observed that the distribution of the 13C label between lactate and pyruvate, which has been shown to be representative of their pool size ratio, is different in NMRI and C57BL/6 mice, the latter exhibiting a higher level of cerebral lactate dehydrogenase A ( Ldha) expression. On the basis of this observation, and an additional set of experiments showing that the cerebral conversion of [1-13C]lactate to [1-13C]pyruvate increases after exposing the brain to ultrasound irradiation that reversibly opens the BBB, we concluded that lactate transport is rate-limited by the BBB, with a 30% increase in lactate uptake after its disruption. It was also deduced from these results that hyperpolarized 13C MRS can be used to detect a variation in cerebral lactate uptake of <40 nmol in a healthy brain during an in vivo experiment lasting only 75 s, opening new opportunities to study the role of lactate in brain metabolism.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Animais , Barreira Hematoencefálica/efeitos da radiação , Encéfalo/efeitos da radiação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Pirúvico/efeitos da radiação , Ondas Ultrassônicas
18.
Int J Cancer ; 143(1): 127-138, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29417580

RESUMO

Glioblastoma are notorious for their highly invasive growth, diffusely infiltrating adjacent brain structures that precludes complete resection, and is a major obstacle for cure. To characterize this "invisible" tumor part, we designed a high resolution multimodal imaging approach assessing in vivo the metabolism of invasively growing glioma xenografts in the mouse brain. Animals were subjected longitudinally to magnetic resonance imaging (MRI) and 1 H spectroscopy (MRS) at ultra high field (14.1 Tesla) that allowed the measurement of 16 metabolic biomarkers to characterize the metabolic profiles. As expected, the neuronal functionality was progressively compromised as indicated by decreasing N-acetyl aspartate, glutamate and gamma-aminobutyric acid and reduced neuronal TCA cycle (-58%) and neurotransmission (-50%). The dynamic metabolic changes observed, captured differences in invasive growth that was modulated by re-expression of the tumor suppressor gene WNT inhibitory factor 1 (WIF1) in the orthotopic xenografts that attenuates invasion. At late stage mice were subjected to 13 C MRS with infusion of [1,6-13 C]glucose and 18 FDG positron emission tomography (PET) to quantify cell-specific metabolic fluxes involved in glucose metabolism. Most interestingly, this provided the first in vivo evidence for significant glucose oxidation in glioma cells. This suggests that the infiltrative front of glioma does not undergo the glycolytic switch per se, but that environmental triggers may induce metabolic reprograming of tumor cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Glioma/diagnóstico por imagem , Glucose/metabolismo , Proteínas Repressoras/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioma/genética , Glioma/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Oxirredução , Tomografia por Emissão de Pósitrons/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Proteínas Repressoras/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
J Cereb Blood Flow Metab ; 38(10): 1701-1714, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047296

RESUMO

In vivo 13C magnetic resonance spectroscopy (MRS) enables the investigation of cerebral metabolic compartmentation while, e.g. infusing 13C-labeled glucose. Metabolic flux analysis of 13C turnover previously yielded quantitative information of glutamate and glutamine metabolism in humans and rats, while the application to in vivo mouse brain remains exceedingly challenging. In the present study, 13C direct detection at 14.1 T provided highly resolved in vivo spectra of the mouse brain while infusing [1,6-13C2]glucose for up to 5 h. 13C incorporation to glutamate and glutamine C4, C3, and C2 and aspartate C3 were detected dynamically and fitted to a two-compartment model: flux estimation of neuron-glial metabolism included tricarboxylic acid cycle (TCA) flux in astrocytes (Vg = 0.16 ± 0.03 µmol/g/min) and neurons (VTCAn = 0.56 ± 0.03 µmol/g/min), pyruvate carboxylase activity (VPC = 0.041 ± 0.003 µmol/g/min) and neurotransmission rate (VNT = 0.084 ± 0.008 µmol/g/min), resulting in a cerebral metabolic rate of glucose (CMRglc) of 0.38 ± 0.02 µmol/g/min, in excellent agreement with that determined with concomitant 18F-fluorodeoxyglucose positron emission tomography (18FDG PET).We conclude that modeling of neuron-glial metabolism in vivo is accessible in the mouse brain from 13C direct detection with an unprecedented spatial resolution under [1,6-13C2]glucose infusion.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Neurológicos , Animais , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Glucose/análise , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Glutamina/análise , Glutamina/metabolismo , Masculino , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo
20.
NMR Biomed ; 30(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28796319

RESUMO

Acetate has been proposed as an astrocyte-specific energy substrate for metabolic studies in the brain. The determination of the relative contribution of the intracellular and extracellular compartments to the acetate signal using diffusion-weighted magnetic resonance spectroscopy can provide an insight into the cellular environment and distribution volume of acetate in the brain. In the present study, localized 1 H nuclear magnetic resonance (NMR) spectroscopy employing a diffusion-weighted stimulated echo acquisition mode (STEAM) sequence at an ultra-high magnetic field (14.1 T) was used to investigate the diffusivity characteristics of acetate and N-acetylaspartate (NAA) in the rat brain in vivo during prolonged acetate infusion. The persistence of the acetate resonance in 1 H spectra acquired at very large diffusion weighting indicated restricted diffusion of acetate and was attributed to intracellular spaces. However, the significantly greater diffusion of acetate relative to NAA suggests that a substantial fraction of acetate is located in the extracellular space of the brain. Assuming an even distribution for acetate in intracellular and extracellular spaces, the diffusion properties of acetate yielded a smaller volume of distribution for acetate relative to water and glucose in the rat brain.


Assuntos
Acetatos/metabolismo , Encéfalo/metabolismo , Imagem de Difusão por Ressonância Magnética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Masculino , Metaboloma , Método de Monte Carlo , Probabilidade , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA