Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Pain Res (Lausanne) ; 3: 1003068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341153

RESUMO

CR4056 is an imidazoline-2 receptor ligand having potent analgesic activity and synergistic effect with opioids. Very recently it has been found that CR4056 can revert the cognitive impairment in animal models of Alzheimer's disease (AD). Since several lines of evidence highlight the importance of NMDAR modulators in nociceptive signaling and in AD progression, we considered as important to investigate the effects of CR4056 on NMDAR activity. In primary culture of cortical neurons, application of NMDA and glycine elicits a current that is decreased in a dose-dependent fashion by CR4056 (IC50 5.3 ± 0.1 µM). CR4056 antagonism is reversible, not competitive and voltage-independent and it is not blocked by pertussis toxin. CR4056 interacts with the co-agonist glycine site in a competitive way, indeed high glycine concentrations diminish its effect. Fibroblasts expressing different recombinant NMDA receptors are differently modulated by CR4056: the potency and the efficacy of the compound are higher in GluN1- GluN2B than in GluN1-GluN2A containing receptors. In lamina II neurons of spinal cord slices, single stimulation of afferent fibers evokes an NMDA-mediated current that is inhibited by 10 µM CR4056. Repetitive stimulation of the dorsal root at high frequency and high intensity produces a firing activity that is significatively depressed by CR4056. Taken together, our results broad the understanding of the molecular mechanisms of CR4056 analgesic activity, involving the modulation of NMDAR activity. Therefore, we propose that the analgesic action of CR4056 and the neuroprotective effects in AD models may be mediated also by NMDAR inhibition.

2.
Br J Pharmacol ; 177(14): 3291-3308, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32154915

RESUMO

BACKGROUND AND PURPOSE: Prolonged use of opioids causes analgesic tolerance and adverse effects including constipation and dependence. Compounds targeting imidazoline I2 receptors are known to potentiate opioid analgesia in rodents. We investigated whether combination with the I2 receptor ligand CR4056 could improve efficacy and safety of morphine and explored the mechanisms of the CR4056-opioid interaction. EXPERIMENTAL APPROACH: We used the complete Freund's adjuvant (CFA) model in rats to study the effects of treatments on hyperalgesia, morphine tolerance and microglia activation as measured by immunofluorescence. Opioid-induced adverse effects were assessed in rodent models of morphine-induced constipation, sedation (open field, sedation rating scale, and rotarod), physical dependence (naloxone-induced withdrawal), and abuse (conditioned place preference-associated reward). Chemiluminescence assays tested CR4056 as allosteric modulator of µ-opioid receptors. KEY RESULTS: CR4056 (ED50 = 4.88 mg·kg-1 ) and morphine (ED50 = 2.07 mg·kg-1 ) synergized in reducing CFA-induced hyperalgesia (ED50 = 0.52 mg·kg-1 ; 1:1 combination). Consistently, low doses of CR4056 (1 mg·kg-1 ) spared one third of the cumulative morphine dose administered during 4 days and prevented/reversed the development of tolerance to morphine anti-hyperalgesia. These opioid-sparing effects were associated with decreased activation of microglia, independent of CR4056 interactions on µ-opioid receptors. Importantly, the low doses of CR4056 and morphine that synergize in analgesia did not induce constipation, sedation, physical dependence, or place preference. CONCLUSION AND IMPLICATIONS: We showed selective synergism between CR4056 and morphine as analgesics. Their combination showed an improved safety and abuse liability profile over morphine alone. CR4056 could be developed as an opioid-sparing drug in multimodal analgesia.


Assuntos
Morfina , Roedores , Analgésicos Opioides/toxicidade , Animais , Tolerância a Medicamentos , Imidazóis , Morfina/efeitos adversos , Quinazolinas , Ratos
3.
Br J Pharmacol ; 177(1): 48-64, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454418

RESUMO

BACKGROUND AND PURPOSE: CR4056 is a first-in-class imidazoline-2 (I2 ) receptor ligand characterized by potent analgesic activity in different experimental animal models of pain. In a recent phase II clinical trial, CR4056 effectively reduced pain in patients with knee osteoarthritis. In the present study, we investigated the effects of CR4056 on PKCε translocation in vitro and on PKCε activation in vivo in dorsal root ganglia (DRG) neurons. EXPERIMENTAL APPROACH: Effects of CR4056 on bradykinin-induced PKCε translocation were studied in rat sensory neurons by immunocytochemistry. PKCε activation was investigated by immunohistochemistry analysis of DRG from complete Freund's adjuvant-treated animals developing local hyperalgesia. The analgesic activity of CR4056 was tested on the same animals. KEY RESULTS: CR4056 inhibited PKCε translocation with very rapid and long-lasting activity. CR4056 decreased hyperalgesia and phospho-PKCε immunoreactivity in the DRG neurons innervating the inflamed paw. The effect of CR4056 on PKCε translocation was blocked by pertussis toxin, implying that the intracellular pathways involved Gi proteins. The inhibition of PKCε translocation by CR4056 was independent of the α2 -adrenoeceptor and, surprisingly, was also independent of idazoxan-sensitive I2 binding sites. The I2 agonist 2BFI had no effect alone but potentiated the activity of low concentrations of CR4056. CONCLUSIONS AND IMPLICATIONS: Our results demonstrate that CR4056 shares the ability to inhibit PKCε translocation with other analgesics. Whether the inhibition of PKCε involves binding to specific subtype(s) of I2 receptors should be further investigated. If so, this would be a new mode of action of a highly specific I2 receptor ligand.


Assuntos
Analgésicos/metabolismo , Membrana Celular/metabolismo , Imidazóis/metabolismo , Receptores de Imidazolinas/metabolismo , Proteína Quinase C-épsilon/antagonistas & inibidores , Quinazolinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Sequência de Aminoácidos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Adjuvante de Freund/toxicidade , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína Quinase C-épsilon/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos
4.
Medchemcomm ; 9(9): 1466-1471, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288221

RESUMO

Two small series of quinoline derivatives were designed starting from previously published quinoline derivatives 7a and b in order to obtain information about their interaction with the 5-HT4R binding site. Initially, the structure of 7a and b was modified by replacing their basic moiety with that of partial agonist 4 (ML10302) or with that of reference ligand 6 (RS-67-333). Then, the aromatic moieties of 4-quinolinecarboxylates 7a, d-f, and h-k or 4-quinolinecarboxamides 7b, c, and g were modified into those of 2-quinolinecarboxamides 9a-e. Very interestingly, this structure-affinity relationship study led to the discovery of 7h-j as novel 5-HT4R ligands showing K i values in the subnanomolar range. The structures of all these compounds contain the N-butyl-4-piperidinylmethyl substituent, which appear to behave as an optimized basic moiety in the interaction of these 4-quinolinecarboxylates with the 5-HT4R binding site. However, this basic moiety was ineffective in providing 5-HT4R affinity in the corresponding 4-quinolinecarboxamide 7g, but it did in 2-quinolinecarboxamide ligands 9c-e. Thus, a subtle interrelationship of several structural parameters appeared to play a major role in the interaction of the ligands with the 5-HT4R binding site. They include the kind of basic moiety, the position of the carbonyl linking group with respect to the aromatic moiety and its orientation, which could be affected by the presence of the intramolecular H-bond as in compounds 9c-e.

5.
Arthritis Res Ther ; 20(1): 39, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490676

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) acts via its EP4 receptor as a cytokine amplifier (e.g., interleukin [IL]-6) and induces the differentiation and expansion of inflammatory T-helper (Th) lymphocytes. These mechanisms play a key role in the onset and progression of rheumatoid arthritis (RA). We present the pharmacological characterisation of CR6086, a novel EP4 receptor antagonist, and provide evidence for its potential as a disease-modifying anti-rheumatic drug (DMARD). METHODS: CR6086 affinity and pharmacodynamics were studied in EP4-expressing HEK293 cells by radioligand binding and cyclic adenosine monophosphate (cAMP) production, respectively. In immune cells, IL-6 and vascular endothelial growth factor (VEGF) expression were analysed by RT-PCR, and IL-23 and IL-17 release were measured by enzyme-linked immunosorbent assay (ELISA). In collagen-induced arthritis (CIA) models, rats or mice were immunised with bovine collagen type II. Drugs were administered orally (etanercept and methotrexate intraperitoneally) starting at disease onset. Arthritis progression was evaluated by oedema, clinical score and histopathology. Anti-collagen II immunoglobulin G antibodies were measured by ELISA. RESULTS: CR6086 showed selectivity and high affinity for the human EP4 receptor (Ki = 16.6 nM) and functioned as a pure antagonist (half-maximal inhibitory concentration, 22 nM) on PGE2-stimulated cAMP production. In models of human immune cells in culture, CR6086 reduced key cytokine players of RA (IL-6 and VEGF expression in macrophages, IL-23 release from dendritic cells, IL-17 release from Th17 cells). In the CIA model of RA in rats and mice, CR6086 significantly improved all features of arthritis: severity, histology, inflammation and pain. In rats, CR6086 was better than the selective cyclooxygenase-2 inhibitor rofecoxib and at least as effective as the Janus kinase inhibitor tofacitinib. In mice, CR6086 and the biologic DMARD etanercept were highly effective, whereas the non-steroidal anti-inflammatory drug naproxen was ineffective. Importantly, in a study of CR6086/methotrexate, combined treatment greatly improved the effect of a fully immunosuppressive dose of methotrexate. CONCLUSIONS: CR6086 is a novel, potent EP4 antagonist showing favourable immunomodulatory properties, striking DMARD effects in rodents, and anti-inflammatory activity targeted to immune-mediated inflammatory diseases and distinct from the general effects of cyclooxygenase inhibitors. These results support the clinical development of CR6086, both as a stand-alone DMARD and as a combination therapy with methotrexate. The proof-of-concept trial in patients with RA is ongoing.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Animais , Antirreumáticos/metabolismo , Artrite Reumatoide/metabolismo , AMP Cíclico/biossíntese , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Células HEK293 , Humanos , Macrófagos/metabolismo , Masculino , Metotrexato/uso terapêutico , Camundongos Endogâmicos DBA , Ensaio Radioligante/métodos , Ratos Endogâmicos Lew , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células THP-1 , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Pain Res ; 10: 1033-1043, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496359

RESUMO

PURPOSE: CR4056, (2-phenyl-6-(1H-imidazol-1yl) quinazoline), an imidazoline-2 (I2) receptor ligand, is a promising analgesic drug that has been reported to be effective in several animal models of pain. The aim of this study was to evaluate the effects of CR4056 in two well-established rat models of osteoarthritis (OA), mimicking the painful and structural components of human OA. METHODS: Knee OA was induced either by single intra-articular injection of monoiodoacetate (MIA) or by medial meniscal tear (MMT) in the right knee of male rats. In the MIA model, allodynia and hyperalgesia were measured as paw withdrawal threshold to mechanical stimulation. In the MMT model, pain behavior was analyzed as weight-bearing asymmetry (i.e. difference in hind paw weight distribution, HPWD) between the injured and the contralateral limbs. RESULTS: Acute oral administration of CR4056, 14 days after MIA injection, significantly and dose-dependently reduced allodynia and hyperalgesia 90 minutes after treatment, whereas acute naproxen administration significantly reduced allodynia but not hyperalgesia. After 7 days of repeated treatment, both CR4056 and naproxen showed significant anti-allodynic and anti-hyperalgesic effects in the MIA model. Rats undergoing MMT surgery developed a significant and progressive asymmetry in HPWD compared with sham-operated animals. Repeated treatment with CR4056 significantly reduced the progression of the pain behavior, whereas naproxen had no effects. CONCLUSION: The data presented here show that the I2 ligand CR4056 could be a new effective treatment for OA pain. The compound is currently under Phase II clinical evaluation for this indication.

7.
Medchemcomm ; 8(3): 647-651, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108781

RESUMO

5-HT4 receptors are known to form constitutive dimers in membranes. To explore whether multivalency can enhance ligand interactions and/or efficacy in 5-HT4 receptors, the structure of the partial agonist ML10302 was modified with oligo(ethylene glycol) chains, thus generating, by a gradual approach, short and long tethered bivalent or tetravalent ligands and the corresponding spanner-linked monovalent controls. Both bivalent and tetravalent ligands displayed a 10-20-fold increase in binding affinity compared to appropriate controls, but no multivalent ligand showed greater binding energy than ML10302 itself. Furthermore, the direct assessment of receptor-Gs interaction and studies of cAMP signalling indicated that multivalency does not enhance the efficacy of ML10302.

8.
Eur J Pharmacol ; 769: 219-24, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26593429

RESUMO

Tolerance to opioid administration represents a serious medical alert in different chronic conditions. This study compares the effects of the imidazoline compounds 1, 2, and 3 on morphine tolerance in an animal model of inflammatory pain in the rat. 1, 2, and 3 have been selected in that, although bearing a common scaffold, preferentially bind to α2-adrenoceptors, imidazoline I2 receptors, or both systems, respectively. Such compounds have been tested in vivo by measuring the paw withdrawal threshold to mechanical pressure after complete Freund's adjuvant injection. To determine the ligand levels in rat plasma, an HPLC-mass spectrometry method has been developed. All the compounds significantly reduced the induction of morphine tolerance, showing different potency and duration of action. Indeed, the selective imidazoline I2 receptor interaction (2) restored the analgesic response by maintaining the same time-dependent profile observed after a single morphine administration. Differently, the selective α2C-adrenoceptor activation (1) or the combination between α2C-adrenoceptor activation and imidazoline I2 receptor engagement (3) promoted a change in the temporal profile of morphine analgesia by maintaining a mild but long lasting analgesic effect. Interestingly, the kinetics of compounds in rat plasma supported the pharmacodynamic data. Therefore, this study highlights that both peculiar biological profile and bioavailability of such ligands complement each other to modulate the reduction of morphine tolerance. Based on these observations, 1-3 can be considered useful leads in the design of new drugs able to turn off the undesired tolerance induced by opioids.


Assuntos
Tolerância a Medicamentos , Imidazolinas/farmacologia , Imidazolinas/farmacocinética , Morfina/uso terapêutico , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Receptores de Imidazolinas/metabolismo , Imidazolinas/metabolismo , Masculino , Dor/tratamento farmacológico , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 2/metabolismo
9.
Chem Commun (Camb) ; 50(62): 8582-5, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-24956157

RESUMO

Multivalency is widely used in nature in specific recognition processes. This paper describes an approach to multivalency in the pentameric 5-HT3 receptor, a ligand-gated ion channel, which constitutes an example of intrinsically multivalent biological receptors. Owing to the picomolar Ki value, TETRA-L represents an outstanding multivalent ligand for the neurotransmitter receptor.


Assuntos
Dendrímeros/síntese química , Canais Iônicos/metabolismo , Piperazinas/síntese química , Receptores 5-HT3 de Serotonina/metabolismo , Dendrímeros/farmacologia , Cinética , Modelos Moleculares , Piperazinas/farmacologia , Termodinâmica
10.
Eur J Med Chem ; 82: 36-46, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24871995

RESUMO

A small series of serotonin 5-HT4 receptor ligands has been designed from flexible 2-methoxyquinoline compounds 7a,b by applying the conformational constraint approach. Ligands 7a,b and the corresponding conformationally constrained analogues 8a-g were synthesized and their interactions with the 5-HT4 receptor were examined by measuring both binding affinity and the ability to promote or inhibit receptor-G protein coupling. Ester derivative 7a and conformationally constrained compound 8b were demonstrated to be the most interesting compounds showing a nanomolar 5-HT4R affinity similar to that shown by reference ligands cisapride (1) and RS-23,597-190 (4). The result was rationalized by docking studies in term of high similarity in the binding modalities of flexible 7a and conformationally constrained 8b. The intrinsic efficacy of some selected ligands was determined by evaluating the receptor-G protein coupling and the results obtained demonstrated that the nature and the position of substituents play a critical role in the interaction of these ligands with their receptor.


Assuntos
Naftiridinas/química , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/química , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Cobaias , Ligantes , Masculino , Modelos Moleculares , Estrutura Molecular , Naftiridinas/síntese química , Naftiridinas/farmacologia , Agonistas do Receptor 5-HT4 de Serotonina/síntese química , Relação Estrutura-Atividade
11.
Br J Pharmacol ; 171(15): 3693-701, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24758515

RESUMO

BACKGROUND AND PURPOSE: CR4056 is a novel imidazoline-2 (I2 ) ligand exhibiting potent analgesic activity in animal models of pain. In this study, we investigated the effects of CR4056 in a well-established model of postoperative pain where rats develop hyperalgesia in the injured hind paw. EXPERIMENTAL APPROACH: By measuring paw withdrawal threshold to mechanical pressure, we studied the pharmacology of CR4056, potential sex differences in pain perception and response to treatment, and the pharmacodynamic interaction of CR4056 with morphine. KEY RESULTS: Oral CR4056 and subcutaneous morphine dose-dependently reversed the hyperalgesic response. Analgesic effects of CR4056 were completely suppressed by the non-selective imidazoline I2 /α2 -adrenoceptor antagonist idazoxan, were partially reduced (~30%; P < 0.05) by the selective α2 -adrenoceptor antagonist yohimbine, but were not influenced by the non-selective I1 /α2 -adrenoceptor antagonist efaroxan or by the µ opioid receptor antagonist naloxone. We found no differences in responses to CR4056 or morphine between male and female rats. However, females had a lower pain threshold than males, and needed lower doses of drugs to reach a significant analgesia. When CR4056 and morphine were combined, their median effective doses were lower than expected for additive effects, both in males and in females. Isobolographic analysis confirmed a synergism between CR4056 and morphine. CONCLUSIONS AND IMPLICATIONS: CR4056 is a novel pharmacological agent under development for postoperative pain both as stand-alone treatment and in association with morphine. CR4056 has successfully completed Phase I studies for tolerability and pharmacokinetics in healthy volunteers, and is currently entering the first proof-of-concept study in patients.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Imidazóis/uso terapêutico , Receptores de Imidazolinas/antagonistas & inibidores , Dor Pós-Operatória/tratamento farmacológico , Quinazolinas/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Analgésicos/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Benzofuranos/farmacologia , Sítios de Ligação , Sinergismo Farmacológico , Feminino , Idazoxano/farmacologia , Imidazóis/farmacologia , Masculino , Morfina/uso terapêutico , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Quinazolinas/farmacologia , Ratos Sprague-Dawley , Ioimbina/farmacologia
12.
Eur J Med Chem ; 63: 85-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23466604

RESUMO

A new class of serotonin 5-HT1A receptor ligands related to NAN-190, buspirone and aripiprazole has been designed using our potent 5-HT3 receptor ligands as templates. The designed pyrrolidone derivatives 10a-n were prepared by means of the straightforward chemistry consisting in the reaction of the appropriate γ-haloester derivatives with the suitable arylpiperazinylalkylamines. The nanomolar 5-HT1A receptor affinity and the agonist-like profile shown by fused pyrrolidone derivatives 10k,m stimulated the rationalization of the interaction with an homology model of the 5-HT1A receptor and the evaluation of their selectivity profiles and the pharmacokinetic properties. Interestingly, the results of the profiling assays suggested for close congeners 10k,m a significantly divergent binding pattern with compound 10m showing an appreciable selectivity for 5-HT1AR.


Assuntos
Pirrolidinonas/química , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Área Sob a Curva , Humanos , Absorção Intestinal , Ligantes , Masculino , Taxa de Depuração Metabólica , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores 5-HT3 de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacocinética , Relação Estrutura-Atividade
13.
ACS Med Chem Lett ; 4(9): 875-9, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900763

RESUMO

Opioid addiction is often characterized as a chronic relapsing condition due to the severe somatic and behavioral signs, associated with depressive disorders, triggered by opiate withdrawal. Since prolonged abstinence remains a major challenge, our interest has been addressed to such objective. Exploring multitarget interactions, the present investigation suggests that 3 or its (S)-enantiomer and 4, endowed with effective α2C-AR agonism/α2A-AR antagonism/5-HT1A-R agonism, or 7 and 9-11 producing efficacious α2C-AR agonism/α2A-AR antagonism/I2-IBS interaction might represent novel multifunctional tools potentially useful for reducing withdrawal syndrome and associated depression. Such agents, lacking in sedative side effects due to their α2A-AR antagonism, might afford an improvement over current therapies with clonidine-like drugs.

14.
J Pain Res ; 5: 151-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792002

RESUMO

Although bortezomib (BTZ) is the frontline treatment for multiple myeloma, its clinical use is limited by the occurrence of painful peripheral neuropathy, whose treatment is still an unmet clinical need. Previous studies have shown chronic BTZ administration (0.20 mg/kg intravenously three times a week for 8 weeks) to female Wistar rats induced a peripheral neuropathy similar to that observed in humans. In this animal model of BTZ-induced neurotoxicity, the present authors evaluated the efficacy of CR4056, a novel I2 ligand endowed with a remarkable efficacy in several animal pain models. CR4056 was administered in a wide range of doses (0.6-60 mg/kg by gavage every day for 2-3 weeks) in comparison with buprenorphine (Bupre) (28.8 µg/kg subcutaneously every day for 2 weeks) and gabapentin (Gaba) (100 mg/kg by gavage every day for 3 weeks). Chronic administration of BTZ reduced nerve conduction velocity and induced allodynia. CR4056, Bupre, or Gaba did not affect the impaired nerve conduction velocity. Conversely, CR4056 dose-dependently reversed BTZ-induced allodynia (minimum effective dose 0.6 mg/kg). The optimal dose found, 6 mg/kg, provided a constant pain relief throughout the treatment period and without rebound after suspension, being effective when coadministered with BTZ, starting before or after allodynia was established, or when administered alone after BTZ cessation. A certain degree of tolerance was seen after 7 days of administration, but only at the highest doses (20 and 60 mg/kg). Bupre was effective only acutely, since tolerance was evident from the fourth day onwards. Gaba showed a significant activity only at the fourth day of treatment. CR4056, over the range of concentrations of 3-30 µM, was unable to hinder BTZ cytotoxicity on several tumor cell lines, which could indicate that this substance does not directly interfere with BTZ antitumor activity. Therefore, CR4056 could represent a new treatment option for BTZ-induced neuropathic pain.

15.
Int J Rheumatol ; 2011: 939265, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22007227

RESUMO

Several clinical studies demonstrated that glucosamine sulfate (GS) is effective in controlling osteoarthritis (OA), showing a structure-modifying action. However, little is known about the molecular mechanism(s) by which GS exerts such action and about the effects of GS at a tissue level on osteoarthritic cartilage and other joint structures. Here we provide mechanistic evidence suggesting that in vitro GS attenuates NF-κB activation at concentrations in the range of those observed after GS administration to volunteers and patients, thus strengthening previous findings. Furthermore, we describe the effects of GS at a tissue level on the progression of the disease in a relevant model of spontaneous OA, the STR/ort mouse. In this model, the administration of GS at human corresponding doses was associated with a significant decrease of OA scores. Histomorphometry showed that the lesion surface was also significantly decreased, while the number of viable chondrocytes within the matrix was significantly increased. GS improved the course of OA in the STR/Ort mouse, by delaying cartilage breakdown as assessed histologically and histomorphometrically.

16.
J Pain Res ; 4: 111-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21647215

RESUMO

Two decades of investigations have failed to unequivocally clarify the functions and the molecular nature of imidazoline-2 receptors (I2R). However, there is robust pharmacological evidence for the functional modulation of monoamino oxidase (MAO) and other important enzyme activities by I2 site ligands. Some compounds of this class proved to be active experimental tools in preventing both experimental pain and opioid tolerance and dependence. Unfortunately, even though these compounds bind with high potency to central I2 sites, they fail to represent a valid clinical opportunity due to their pharmacokinetic, selectivity or side-effects profile. This paper presents the preclinical profile of a novel I2 ligand (2-phenyl-6-(1H-imidazol-1yl) quinazoline; [CR4056]) that selectively inhibits the activity of human recombinant MAO-A in a concentration-dependent manner. A sub-chronic four day oral treatment of CR4056 increased norepinephrine (NE) tissue levels both in the rat cerebral cortex (63.1% ±4.2%; P < 0.05) and lumbar spinal cord (51.3% ± 6.7%; P < 0.05). In the complete Freund's adjuvant (CFA) rat model of inflammatory pain, CR4056 was found to be orally active (ED50 = 5.8 mg/kg, by mouth [p.o.]). In the acute capsaicin model, CR4056 completely blocked mechanical hyperalgesia in the injured hind paw (ED50 = 4.1 mg/kg, p.o.; ED100 = 17.9 mg/kg, p.o.). This effect was dose-dependently antagonized by the non-selective imidazoline I2/α2 antagonist idazoxan. In rat models of neuropathic pain, oral administration of CR4056 significantly attenuated mechanical hyperalgesia and allodynia. In summary, the present study suggests a novel pharmacological opportunity for inflammatory and/or neuropathic pain treatment based on selective interaction with central imidazoline-2 receptors.

17.
Pharmacol Res ; 61(5): 430-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20045056

RESUMO

Neboglamine is a functional modulator of the glycine site on the N-methyl-d-aspartate (NMDA) receptor. Dysfunction of this receptor has been associated with negative and cognitive symptoms in schizophrenia. Thus, we tested the hypothesis that neboglamine behaves as a potential antipsychotic. We compared the effects of neboglamine, D-serine, clozapine, and haloperidol on the expression of Fos-like immunoreactivity (FLI), a marker of neuronal activation, in rat forebrain. We also studied the effects of these agents on phencyclidine (PCP)-induced behaviour in rats, a model predictive of potential antipsychotic activity. Neboglamine, like haloperidol and clozapine, significantly increased the number of FLI-positive cells in the prefrontal cortex, nucleus accumbens, and lateral septal nucleus (3.2-, 4.8-, and 4.5-fold over control, respectively). Haloperidol dramatically increased FLI (390-fold over control) in the dorsolateral striatum, a brain region in which neboglamine and clozapine had no effect. The pattern of FLI induced by neboglamine closely matched that of d-serine, an endogenous agonist at the glycine site of NMDA receptors. Consistent with this finding, neboglamine restored NMDA-mediated neurotransmitter release in frontal cortex punches exposed to the NMDA antagonist PCP. In the behavioural model, all test compounds significantly inhibited PCP-induced hyperlocomotion. Unlike haloperidol and clozapine, neither neboglamine nor D-serine affected the basal levels of locomotor activity. Moreover, oral neboglamine dose-dependently inhibited both the hyperlocomotion and the frequency of rearing behaviour induced by PCP. These results, while confirming that the NMDA glycine site is a feasible target for activating the frontostriatal system, support the clinical evaluation of neboglamine as a treatment for schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ácidos Pentanoicos/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Clozapina/farmacologia , Relação Dose-Resposta a Droga , Alucinógenos/antagonistas & inibidores , Alucinógenos/farmacologia , Haloperidol/farmacologia , Imuno-Histoquímica , Masculino , Atividade Motora/efeitos dos fármacos , Fenciclidina/antagonistas & inibidores , Fenciclidina/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores de Glicina/efeitos dos fármacos , Serina/metabolismo
18.
Eur J Pharmacol ; 584(2-3): 297-305, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18342306

RESUMO

Microdialysis in intact and denervated striatum of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats was used to investigate whether CR 3394, N-[2-(3,5-dimethyl-1-adamantyl)ethyl]acetamidine, an adamantane derivative with preferential selectivity for the NR2B subunit of the NMDA receptor, has dopamine releasing properties in vivo. We also investigated whether this NMDA antagonist can potentiate the effects of L-Dopa on extracellular dopamine in these animals. After systemic injection, there was no significant effect of CR 3394 on extracellular dopamine, at all doses studied (1, 5 and 20 mg/kg i.p.), in either intact or in denervated striatum. On the other hand, striatal perfusion with 100 microM of the compound elicited release of dopamine in intact, but not in denervated striatum. In denervated striatum of the 6-OHDA-lesioned rats, CR 3394 (5 mg/kg) significantly enhanced the dopamine release induced by L-Dopa administration (25 mg/kg i.p.) in combination with benserazide (10 mg/kg i.p.). In particular, the onset of action of L-Dopa was potentiated. However, when combined with a subthreshold dose of L-Dopa (5 mg/kg), the effects of CR 3394 were lost. We conclude that CR 3394, like other NR2B receptor antagonists, has dopamine releasing properties in vivo. It enhances the effects of suprathreshold doses of L-Dopa in the denervated striatum, but not of low doses of L-Dopa. Therefore, future studies are necessary to establish the potential of selective NR2B receptor antagonists as L-Dopa-sparing agents.


Assuntos
Adamantano/análogos & derivados , Amidinas/farmacologia , Antiparkinsonianos/farmacologia , Gânglios da Base/efeitos dos fármacos , Dopaminérgicos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Levodopa/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Adamantano/administração & dosagem , Adamantano/farmacologia , Amidinas/administração & dosagem , Animais , Antiparkinsonianos/administração & dosagem , Gânglios da Base/metabolismo , Denervação , Dopamina/metabolismo , Dopaminérgicos/administração & dosagem , Relação Dose-Resposta a Droga , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Injeções Intraperitoneais , Levodopa/administração & dosagem , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Feixe Prosencefálico Mediano/metabolismo , Microdiálise , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Perfusão , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
19.
Neuropharmacology ; 50(3): 277-85, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16236334

RESUMO

Using the patch-clamp technique, we studied the effect of two novel adamantane derivatives, N-[2-(3,5-dimethyl-1-adamantyl)ethyl] guanidine (CR 3391) and N-[2-(3,5-dimethyl-1-adamantyl) ethyl]acetamidine (CR 3394), on NMDA receptors expressed in cortical neuron cultures. Our data show that CR 3391 and CR 3394 reduce NMDA-evoked currents (IC50 = 1.7 +/- 0.6 microM and 6.7 +/- 1.5 microM, respectively). This antagonism is non-competitive and is completely reversible. The effect of CR 3394, like that of memantine, was strongly voltage dependent. HEK293 cells expressing NR1a/NR2B recombinant NMDA receptors and immature neurons (DIV 8-9) were more sensitive to CR 3394 antagonism than NR1a/NR2A expressing cells and DIV 15 neurons. CR 3394 also reduced the duration and amplitude of miniature excitatory post-synaptic currents mediated exclusively by NMDA receptors (NMDA-mEPSCs). Both memantine and CR 3394 inhibited NMDA-evoked [3H]norepinephrine release from rat hippocampal slices in a concentration-dependent manner with similar potency. CR 3394, but not memantine, increased cathecholamine resting release at low micromolar concentrations. Moreover, in an in vitro model of neurotoxicity, CR 3394 strongly reduced glutamate- and NMDA-induced neuronal death. Taken together, our data highlight pharmacological features of CR 3394 in vitro that prompt us to further evaluate it as a candidate for the treatment of neurodegenerative disorders.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Adamantano/análogos & derivados , Adamantano/farmacologia , Amidinas/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Humanos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , N-Metilaspartato/farmacologia , Inibição Neural/efeitos dos fármacos , Norepinefrina/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transfecção/métodos , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA