Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 62(22): 8720-8738, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091591

RESUMO

In breast cancer screening or diagnosis, it is usual to combine different images in order to locate a lesion as accurately as possible. These images are generated using a single or several imaging techniques. As x-ray-based mammography is widely used, a breast lesion is located in the same plane of the image (mammogram), but tracking it across mammograms corresponding to different views is a challenging task for medical physicians. Accordingly, simulation tools and methodologies that use patient-specific numerical models can facilitate the task of fusing information from different images. Additionally, these tools need to be as straightforward as possible to facilitate their translation to the clinical area. This paper presents a patient-specific, finite-element-based and semi-automated simulation methodology to track breast lesions across mammograms. A realistic three-dimensional computer model of a patient's breast was generated from magnetic resonance imaging to simulate mammographic compressions in cranio-caudal (CC, head-to-toe) and medio-lateral oblique (MLO, shoulder-to-opposite hip) directions. For each compression being simulated, a virtual mammogram was obtained and posteriorly superimposed to the corresponding real mammogram, by sharing the nipple as a common feature. Two-dimensional rigid-body transformations were applied, and the error distance measured between the centroids of the tumors previously located on each image was 3.84 mm and 2.41 mm for CC and MLO compression, respectively. Considering that the scope of this work is to conceive a methodology translatable to clinical practice, the results indicate that it could be helpful in supporting the tracking of breast lesions.


Assuntos
Neoplasias da Mama/diagnóstico , Mama/patologia , Simulação por Computador , Análise de Elementos Finitos/normas , Imageamento por Ressonância Magnética/métodos , Mamografia/métodos , Compressão de Dados , Feminino , Humanos
2.
Med Eng Phys ; 33(9): 1094-102, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21612969

RESUMO

Breast augmentation surgery is a widespread practice for aesthetic purposes. Current techniques, however, are not able to reliably predict the desired final aspect of the breast after the intervention, whose success relies almost completely on the surgeon's skill. In this way, patient-specific methodologies capable of predicting the outcomes of such interventions are of particular interest. In this paper, a finite element biomechanical model of the breast of a female patient before an augmentation mammoplasty was generated using computer tomography images. Prosthesis insertion during surgery was simulated using the theory of finite elasticity. Hyperelastic constitutive models were considered for breast tissues and silicone implants. The deformed geometry obtained from finite element analysis was compared qualitatively and quantitatively with the real breast shape of the patient lying in supine position, with root-mean-squared errors less than 3mm. The results indicate that the presented methodology is able to reasonably predict the aspect of the breast in an intermediate step of augmentation mammoplasty, and reveal the potential capabilities of finite element simulations for visualization and prediction purposes. However, further work is required before this methodology can be helpful in aesthetic surgery planning.


Assuntos
Implantes de Mama , Análise de Elementos Finitos , Mamoplastia/métodos , Medicina de Precisão/métodos , Adulto , Feminino , Humanos , Decúbito Dorsal , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA