Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177048

RESUMO

With the growing population, access to clean water is one of the 21st-century world's challenges. For this reason, different strategies to reduce pollutants in water using renewable energy sources should be exploited. Photocatalysts with extended visible light harvesting are an interesting route to degrade harmful molecules utilized in plastics, as is the case of Bisphenol A (BPA). This work uses a microwave-assisted route for the synthesis of two photocatalysts (BiOI and Bi2MoO6). Then, BiOI/Bi2MoO6 heterostructures of varied ratios were produced using the same synthetic routes. The BiOI/Bi2MoO6 with a flower-like shape exhibited high photocatalytic activity for BPA degradation compared to the individual BiOI and Bi2MoO6. The high photocatalytic activity was attributed to the matching electronic band structures and the interfacial contact between BiOI and Bi2MoO6, which could enhance the separation of photo-generated charges. Electrochemical, optical, structural, and chemical characterization demonstrated that it forms a BiOI/Bi2MoO6 p-n heterojunction. The free radical scavenging studies showed that superoxide radicals (O2•-) and holes (h+) were the main reactive species, while hydroxyl radical (•OH) generation was negligible during the photocatalytic degradation of BPA. The results can potentiate the application of the microwave synthesis of photocatalytic materials.

2.
Langmuir ; 38(25): 7740-7749, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35687828

RESUMO

Parahydrophobic surfaces (PHSs) composed of arrays of cubic µ-pillars with a double scale of roughness and variable wettability were systematically obtained in one step and a widely accessible stereolithographic Formlabs 3D printer. The wettability control was achieved by combining the geometrical parameters (H = height and P = pitch) and the surface modification with fluoroalkyl silane compounds. Homogeneous distribution of F and Si atoms onto the pillars was observed by XPS and SEM-EDAX. A nano-roughness on the heads of the pillars was achieved without any post-treatment. The smallest P values lead to surfaces with static contact angles (CAs) >150° regardless of the H utilized. Interestingly, the relationship 0.6 ≤ H/P ≤ 2.6 obtained here was in good agreement with the H/P values reported for nano- and submicron pillars. Furthermore, experimental CAs, advancing and receding CAs, were consistent with the theoretical prediction from the Cassie-Baxter model. Structures covered with perfluorodecyltriethoxysilane with high H and short P lead to PHSs. Conversely, structures covered with perfluorodecyltrimethoxysilane exhibited a superhydrophobic behavior. Finally, several aqueous reactions, such as precipitation, coordination complex, and nanoparticle synthesis, were carried out by placing the reactive agents as microdroplets on the parahydrophobic pillars, demonstrating the potential application as chemical multi-reaction array platforms for a large variety of relevant fields in microdroplet manipulation, microfluidics systems, and health monitoring, among others.

3.
Soft Matter ; 17(32): 7524-7531, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34318867

RESUMO

In nature, superhydrophobic surfaces (SHSs) exhibit microstructures with several roughness scales. Scalable fabrication and build-up along the X-Y plane represent the promise of 3D printing technology. Herein we report 3D printed microstructures with a dual roughness scale that achieves SHS using a readily available Formlabs stereolithography (SLA) printer. Pillar-like structure (PLS) arrangements with a wide range of geometrical shapes were 3D printed at three resolutions and two printing orientations. We discovered that a tilted printing direction enables a stair-case pattern on the µ-PLS surfaces, conferring them a µ-roughness that reduces the solid-liquid contact area. The programmed resolution governs the number of polymerized layers that give rise to the stepped pattern on the µ-PLS surfaces. However, this is reduced as the printing resolution increases. Also, all samples' experimental contact angles were consistent with theoretical predictions from Cassie-Baxter, Wenzel, and Nagayama wettability models. The underlying mechanisms and governing parameters were also discussed. It is believed that this work will enable scalable and high throughput roughness design in augmenting future 3D printing object applications.

4.
ACS Appl Mater Interfaces ; 12(43): 49061-49072, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33073976

RESUMO

Surface functionalization of graphene oxide (GO) is one of the best ways to achieve homogeneous dispersions of GO within polymeric matrices and composites. Nonetheless, studies regarding how the level of GO functionalization affects the macroscopic properties of three-dimensional (3D) printed nanocomposites are still few. Furthermore, the bifunctionalization of GO with the NH2/NH3+ groups to obtain improved thermomechanical macroscopic properties at ultralow loads has not been reported. In this paper, fast and straightforward surface bifunctionalization of GO with a controlled ratio of NH2/NH3+ groups at low, medium, and high functionalization levels (AGOL, AGOM, and AGOH) in a one-step microwave-assisted synthesis is reported for the first time. The functionalization mechanism was disclosed, wherein three graft densities (Gφ) were obtained. A plateau of maximum functionalization (Gφ = 4.9 µmol/m2 = 2.9 molecules/nm2) was reached, suggesting that full coverage of the GO surface is achievable. Also, an increase in the exfoliation of functionalized layers was obtained, ranging from d002 = 8.6 Å up to d002 = 15.8 Å. X-ray photoelectron spectroscopy (XPS) reveals the successful functionalization of GO, as well as an atomic relationship NH2/NH3+ of about 50/50% in all functionalized samples. Stereolithographic (SLA) 3D-printed nanocomposites (AGOL/R, AGOM/R, and AGOH/R) were obtained using ultralow loads (0.01 wt %) of each bifunctionalized material. This ultralow amount was sufficient to enhance thermal stability (up to 4 °C) and a significant increase in the glass transition temperature (93 °C ≤ Tg ≤ 120 °C). Interestingly, we found that low and medium grafting density promotes a ductile material (ε > 5%); meanwhile, a high graft density produces brittle materials. Also, we observe that the toughness can be tuned as a function of the graft density (AGOH: 24 MPa, AGOM: 342 MPa, AGOL: 562 MPa) at ultralow loadings. The 3D-printed nanocomposites using GO with low graft density (AGOL) increase their tensile strain by 90% in comparison with the control sample (without filler). Finally, the underlying mechanisms were discussed to explain the findings.

5.
ACS Appl Mater Interfaces ; 12(40): 45254-45265, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32910633

RESUMO

The design of new materials with two or more functional groups must be strongly considered to achieve multifunctional coatings with outstanding properties such as active-passive protection against corrosion, low-friction, antifouling, and sensing, among others. In this sense, nanocomposites based on solvent-free epoxy resin/bifunctionalized reduced graphene oxide layers with NH2 and NH3+ groups (ER/BFRGO) with super-anticorrosive properties are for the first time reported here. The amine groups (-NH2) act as cross-linker agents, which react with epoxy terminal groups from resin, thus closing the gap between the BFRGO layers and the polymeric matrix. Meanwhile, the ammonium ions (-NH3+) are effective trapping agents of negatively charged atoms or molecules (e.g., Cl-). This novel combination enables us to obtain nanocomposite coatings with passive-active protection against corrosion. ER/BFRGO deposited onto A36 mild steel exhibited a remarkably enhanced barrier against corrosion into a saline medium (1 M NaCl; 58.4 g/L), wherein the corrosion current density (icorr) was diminished 6 orders of magnitude (icorr = 5.12 × 10-12 A/cm2), with respect to A36 mild steel coated only with ER (icorr = 2.34 × 10-6 A/cm2). Also, the highest polarization resistance Rp = 6.04 × 107 Ω/cm2 was obtained, which represents the lowest corrosion rate and corresponds to 3 orders of magnitude higher than A36 mild steel coated with ER (Rp = 1.43 × 104 Ω/cm2). The strategy of bifunctionalization proposed herein to obtain bifunctionalized reduced GO with NH2 and NH3+ groups has not been disclosed in the literature before; in consequence, this work opens a new pathway toward the design of smart materials based on multifunctional nanomaterials.

6.
ACS Omega ; 3(12): 16934-16944, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458317

RESUMO

Hybrid powder coatings (HPC) with low friction and high hardness enhance the sliding speed and allow interlocking or meshing products to slide effortlessly within each other, saving energy. In automobiles, they decrease fuel consumption and greenhouse gas emission. In the present work, a new insight of the key role played by the coverage density of triethoxyphenylsilane (TPS) grafted to SiO2 nanoparticles over the friction coefficient, hardness, elastic modulus, and roughness of HPC is presented for the first time. In all cases, a very low amount (0.1 wt %) of functionalized or unfunctionalized SiO2 nanoparticles were added to a powder-coating formulation based on polyester resin. HPC formulated with functionalized nanoparticles at a suitable coverage density (HPC-TPS3) exhibited significantly low friction coefficient (µ = 0.12), strong wear resistance (under dry sliding conditions at 1 and 5 N of load), low roughness (R q = 3.5 nm), and high hardness and elastic modulus on the surface. We demonstrated that it is possible to tune the macroscopic properties by varying only the coverage density of TPS that is chemically attached to SiO2 nanoparticles. Also, a physicochemical explanation was disclosed, wherein a hydrophilic-hydrophobic balance between -OH and phenyl groups was proposed. In all cases, the phenyl group allows the migration of functionalized nanoparticles through the polyester matrix, enhancing the hardness and elastic modulus on the surface. Thus, the functional nanomaterial design with tunable coverage density is a powerful tool to improve the physical and superficial properties of powder coatings using low amounts of nanomaterial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA