Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Control Release ; 368: 444-452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401849

RESUMO

Among non-viral gene delivery vectors, poly(ß-amino ester)s (PAEs) are one of the most versatile candidates because of their wide monomer availability, high polymer flexibility, and superior gene transfection performance both in vitro and in vivo. Over two decades, PAEs have evolved from linear to highly branched structures, significantly enhancing gene delivery efficacy. Building on the proven efficient sets of monomers in highly branched PAEs (HPAEs), this work introduced a new class of cyclic PAEs (CPAEs) constructed via an A2 + B4 + C2 cyclization synthesis strategy and identified their markedly improved gene transfection capabilities in gene delivery applications. Two sets of cyclic PAEs (CPAEs) with rings of different sizes and topologies were obtained. Their chemical structures were confirmed via two-dimensional nuclear magnetic resonance and the photoluminescence phenomena, and their DNA delivery behaviours were investigated and compared with the HPAE counterparts. In vitro assessments demonstrated that the CPAEs with a macrocyclic architecture (MCPAEs), significantly enhanced DNA intracellular uptake and facilitated efficient gene expression while maintaining perfect biocompatibility. The top-performance MCPAEs have been further employed to deliver a plasmid coding dual single guide RNA-guided CRISPR-Cas9 machinery to delete COL7A1 exon 80 containing the c.6527dupC mutation. In recessive dystrophic epidermolysis bullosa (RDEB) patient-derived epidermal keratinocytes, MCPAEs facilitated the CRISPR plasmid delivery and achieved efficient targeted gene editing in multiple colonies.


Assuntos
Ésteres , Edição de Genes , Polímeros , Humanos , Edição de Genes/métodos , Ciclização , RNA Guia de Sistemas CRISPR-Cas , DNA/metabolismo , Sistemas CRISPR-Cas/genética , Colágeno Tipo VII/genética
2.
J Control Release ; 367: 327-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272397

RESUMO

Gene therapy holds great potential for treating Lung Cystic Fibrosis (CF) which is a fatal hereditary condition arising from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in dysfunctional CFTR protein. However, the advancement and clinical application of CF gene therapy systems have been hindered due to the absence of a highly efficient delivery vector. In this work, we introduce a new generation of highly branched poly(ß-amino ester) (HPAE) gene delivery vectors for CF treatment. Building upon the classical chemical composition of HPAE, a novel backbone cationization strategy was developed to incorporate additional functional amine groups into HPAE without altering their branching degree. By carefully adjusting the type, proportion, and backbone distribution of the added cationic groups, a series of highly effective HPAE gene delivery vectors were successfully constructed for CF disease gene therapy. In vitro assessment results showed that the backbone cationized HPAEs with randomly distributed 10% proportion of 1-(3-aminopropyl)-4-methylpiperazine (E7) amine groups exhibited superior transfection performance than their counterparts. Furthermore, the top-performed backbone cationized HPAEs, when loaded with therapeutic plasmids, successfully reinstated CFTR protein expression in the CFBE41o- disease model, achieving levels 20-23 times higher than that of normal human bronchial epithelial (HBE) cells. Their therapeutic effectiveness significantly surpassed that of the currently advanced commercial vectors, Xfect and Lipofectamine 3000.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Terapia Genética , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Polímeros/química , Aminas , Vetores Genéticos/genética
3.
Mol Ther Methods Clin Dev ; 31: 101134, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027067

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is an autosomal monogenic skin disease caused by mutations in COL7A1 gene and lack of functional type VII collagen (C7). Currently, there is no cure for RDEB, and most of the gene therapies under development have been designed as ex vivo strategies because of the shortage of efficient and safe carriers for gene delivery. Herein, we designed, synthesized, and screened a new group of highly branched poly(ß amino ester)s (HPAEs) as non-viral carriers for the delivery of plasmids encoding dual single-guide RNA (sgRNA)-guided CRISPR-Cas9 machinery to delete COL7A1 exon 80 containing the c.6527dupC mutation. The selected HPAEs (named PTTA-DATOD) showed robust transfection efficiency, comparable with or surpassing that of leading commercial gene transfection reagents such as Lipofectamine 3000, Xfect, and jetPEI, while maintaining negligible cytotoxicity. Furthermore, CRISPR-Cas9 plasmids delivered by PTTA-DATOD achieved efficient targeted deletion and restored bulk C7 production in RDEB patient keratinocyte polyclones. The non-viral CRISPR-Cas9-based COL7A1 exon deletion approach developed here has great potential to be used as a topical treatment for RDEB patients with mutations in COL7A1 exon 80. Besides, this therapeutic strategy can easily be adapted for mutations in other COL7A1 exons, other epidermolysis bullosa subtypes, and other genetic diseases.

4.
J Am Chem Soc ; 145(31): 17187-17200, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490481

RESUMO

The topological structures of polymers play a critical role in determining their gene delivery efficiency. Exploring novel polymeric structures as gene delivery vectors is thus of great interest. In this work, a new generation of multi-cyclic poly(ß-amino ester)s (CPAEs) with unique topology structure was synthesized for the first time via step growth polymerization. Through controlling the occurrence stage of cyclization, three types of CPAEs with rings of different sizes and topologies were obtained. In vitro experiments demonstrated that the CPAEs with macro rings (MCPAEs) significantly boosted the transgene expression comparing to their branched counterparts. Moreover, the MCPAE vector with optimized terminal group efficiently delivered the CRISPR plasmid coding both Staphylococcus aureus Cas9 nuclease and dual guide sgRNAs for gene editing therapy.


Assuntos
Técnicas de Transferência de Genes , RNA Guia de Sistemas CRISPR-Cas , Polimerização , Polímeros/química , Sistemas CRISPR-Cas
5.
Vet Parasitol ; 319: 109954, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37163871

RESUMO

Canine demodicosis is a common skin disease seen in companion animal practice that results from an overpopulation of the commensal Demodex mite species. Common predisposing factors to the development of canine demodicosis include immunosuppressive diseases, such as neoplasia and hypothyroidism, and administration of immunosuppressive therapies, such as corticosteroids. Despite this, the pathogenesis of development of canine demodicosis remains unclear. Previous studies have implicated a role for increased expression of toll like receptor 2 (TLR2), increased production of interleukin (IL)-10) and T cell exhaustion. Here, we investigate gene expression of formalin fixed paraffin embedded skin samples from twelve cases of canine demodicosis in comparison to twelve healthy controls, using a 770 gene panel (NanoString Canine IO Panel). Results show an increase in the T cell population, specifically Th1 and Treg cells in dogs with demodicosis. In addition, while there is an upregulation of immunosuppressive cytokines such as IL-10 and IL-13, there is also an upregulation of immune check point molecules including PD-1/PD-L1 and CTLA-4. These findings suggest that Demodex spp. mites are modulating the host immune system to their advantage through upregulation of several immune tolerance promoting pathways.


Assuntos
Doenças do Cão , Infestações por Ácaros , Ácaros , Animais , Cães , Infestações por Ácaros/genética , Infestações por Ácaros/veterinária , Ácaros/fisiologia , Doenças do Cão/genética , Tolerância Imunológica , Perfilação da Expressão Gênica/veterinária
6.
Macromol Biosci ; 23(9): e2300094, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158294

RESUMO

Wound infections slow down the healing process and lead to complications such as septicemia, osteomyelitis, and even death. Although traditional methods relying on antibiotics are effective in controlling infection, they have led to the emergence of antibiotic-resistant bacteria. Hydrogels with antimicrobial function become a viable option for reducing bacterial colonization and infection while also accelerating healing processes. Chitosan is extensively developed as antibacterial wound dressings due to its unique biochemical properties and inherent antibacterial activity. In this review, the recent research progress of chitosan-based hydrogels for infected wound treatment, including the fabrication methods, antibacterial mechanisms, antibacterial performance, wound healing efficacy, etc., is summarized. A concise assessment of current limitations and future trends is presented.


Assuntos
Anti-Infecciosos , Quitosana , Infecção dos Ferimentos , Humanos , Quitosana/farmacologia , Quitosana/uso terapêutico , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Hidrogéis/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Infecção dos Ferimentos/terapia
7.
Polymers (Basel) ; 15(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36987297

RESUMO

Highly branched poly(ß-amino ester) (HPAE) has become one of the most promising non-viral gene delivery vector candidates. When compared to other gene delivery vectors, HPAE has a broad molecular weight distribution (MWD). Despite significant efforts to optimize HPAE targeting enhanced gene delivery, the effect of different molecular weight (MW) components on transfection has rarely been studied. In this work, a new structural optimization strategy was proposed targeting enhanced HPAE gene transfection. A series of HPAE with different MW components was obtained through a stepwise precipitation approach and applied to plasmid DNA delivery. It was demonstrated that the removal of small MW components from the original HPAE structure could significantly enhance its transfection performance (e.g., GFP expression increased 7 folds at w/w of 10/1). The universality of this strategy was proven by extending it to varying HPAE systems with different MWs and different branching degrees, where the transfection performance exhibited an even magnitude enhancement after removing small MW portions. This work opened a new avenue for developing high-efficiency HPAE gene delivery vectors and provided new insights into the understanding of the HPAE structure-property relationship, which would facilitate the translation of HPAEs in gene therapy clinical applications.

8.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364669

RESUMO

Many polymeric gene delivery nano-vectors with hyperbranched structures have been demonstrated to be superior to their linear counterparts. The higher delivery efficacy is commonly attributed to the abundant terminal groups of branched polymers, which play critical roles in cargo entrapment, material-cell interaction, and endosome escape. Hyperbranched poly(ß-amino ester)s (HPAEs) have developed as a class of safe and efficient gene delivery vectors. Although numerous research has been conducted to optimise the HPAE structure for gene delivery, the effect of the secondary amine residue on its backbone monomer, which is considered the non-ideal termination, has never been optimised. In this work, the effect of the non-ideal termination was carefully evaluated. Moreover, a series of HPAEs with only ideal terminations were synthesised by adjusting the backbone synthesis strategy to further explore the merits of hyperbranched structures. The HPAE obtained from modified synthesis methods exhibited more than twice the amounts of the ideal terminal groups compared to the conventional ones, determined by NMR. Their transfection performance enhanced significantly, where the optimal HPAE candidates developed in this study outperformed leading commercial benchmarks for DNA delivery, including Lipofectamine 3000, jetPEI, and jetOPTIMUS.

9.
Gene Ther ; 29(3-4): 157-170, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34363036

RESUMO

Recent advances in molecular biology have led to the CRISPR revolution, but the lack of an efficient and safe delivery system into cells and tissues continues to hinder clinical translation of CRISPR approaches. Polymeric vectors offer an attractive alternative to viruses as delivery vectors due to their large packaging capacity and safety profile. In this paper, we have demonstrated the potential use of a highly branched poly(ß-amino ester) polymer, HPAE-EB, to enable genomic editing via CRISPRCas9-targeted genomic excision of exon 80 in the COL7A1 gene, through a dual-guide RNA sequence system. The biophysical properties of HPAE-EB were screened in a human embryonic 293 cell line (HEK293), to elucidate optimal conditions for efficient and cytocompatible delivery of a DNA construct encoding Cas9 along with two RNA guides, obtaining 15-20% target genomic excision. When translated to human recessive dystrophic epidermolysis bullosa (RDEB) keratinocytes, transfection efficiency and targeted genomic excision dropped. However, upon delivery of CRISPR-Cas9 as a ribonucleoprotein complex, targeted genomic deletion of exon 80 was increased to over 40%. Our study provides renewed perspective for the further development of polymer delivery systems for application in the gene editing field in general, and specifically for the treatment of RDEB.


Assuntos
Sistemas CRISPR-Cas , Epidermólise Bolhosa Distrófica , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Edição de Genes , Células HEK293 , Humanos , Polímeros/metabolismo
10.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884578

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare autosomal inherited skin disorder caused by mutations in the COL7A1 gene that encodes type VII collagen (C7). The development of an efficient gene replacement strategy for RDEB is mainly hindered by the lack of vectors able to encapsulate and transfect the large cDNA size of this gene. To address this problem, our group has opted to use polymeric-based non-viral delivery systems and minicircle DNA. With this approach, safety is improved by avoiding the usage of viruses, the absence of bacterial backbone, and the replacement of the control viral cytomegalovirus (CMV) promoter of the gene with human promoters. All the promoters showed impressive C7 expression in RDEB skin cells, with eukaryotic translation elongation factor 1 α (EF1α) promoter producing higher C7 expression levels than CMV following minicircle induction, and COL7A1 tissue-specific promoter (C7P) generating C7 levels similar to normal human epidermal keratinocytes. The improved system developed here has a high potential for use as a non-viral topical treatment to restore C7 in RDEB patients efficiently and safely, and to be adapted to other genetic conditions.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Mutação , Regiões Promotoras Genéticas , Células Cultivadas , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Fibroblastos/metabolismo , Vetores Genéticos/genética , Humanos , Queratinócitos/metabolismo
11.
Materials (Basel) ; 14(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34683575

RESUMO

Due to their biodegradability and biocompatibility, chitosan-based hydrogels have great potential in regenerative medicine, with applications such as bacteriostasis, hemostasis, and wound healing. However, toxicity and high cost are problems that must be solved for chitosan-based hydrogel crosslinking agents such as formaldehyde, glutaraldehyde, and genipin. Therefore, we developed a biocompatible yet cost-effective chitosan-based hydrogel system as a candidate biomaterial to prevent infection during wound healing. The hydrogel was fabricated by crosslinking chitosan with dialdehyde chitosan (CTS-CHO) via dynamic Schiff-base reactions, resulting in a self-healable and injectable system. The rheological properties, degradation profile, and self-healable properties of the chitosan-based hydrogel were evaluated. The excellent antibacterial activity of the hydrogel was validated by a spread plate experiment. The use of Live/Dead assay on HEK 293 cells showed that the hydrogel exhibited excellent biocompatibility. The results demonstrate that the newly designed chitosan-based hydrogel is an excellent antibacterial wound dressing candidate with good biocompatibility.

12.
Adv Drug Deliv Rev ; 176: 113842, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34293384

RESUMO

Non-viral gene therapy for hereditary skin diseases is an attractive prospect. However, research efforts dedicated to this area are rare. Taking advantage of the branched structural possibilities of polymeric vectors, we have developed a gene delivery platform for the treatment of an incurable monogenic skin disease - recessive dystrophic epidermolysis bullosa (RDEB) - based on highly branched poly(ß-amino ester)s (HPAEs). The screening of HPAEs and optimization of therapeutic gene constructs, together with evaluation of the combined system for gene transfection, were comprehensively reviewed. The successful restoration of type VII collagen (C7) expression both in vitro and in vivo highlights HPAEs as a promising generation of polymeric vectors for RDEB gene therapy into the clinic. Considering that the treatment of patients with genetic cutaneous disorders, such as other subtypes of epidermolysis bullosa, pachyonychia congenita, ichthyosis and Netherton syndrome, remains challenging, the success of HPAEs in RDEB treatment indicates that the development of viable polymeric gene delivery vectors could potentially expedite the translation of gene therapy for these diseases from bench to bedside.


Assuntos
Epidermólise Bolhosa Distrófica/terapia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Animais , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Humanos , Polímeros/química , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/patologia , Dermatopatias Genéticas/terapia , Pesquisa Translacional Biomédica/métodos
13.
J Mater Chem B ; 9(32): 6326-6346, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34304256

RESUMO

Reactive oxygen species (ROS) are generated in cellular metabolism and are essential for cellular signalling networks and physiological functions. However, the functions of ROS are 'double-edged swords' to living systems that have a fragile redox balance between ROS generation and elimination. A modest increase of ROS leads to enhanced cell proliferation, survival and benign immune responses, whereas ROS stress that overwhelms the cellular antioxidant capacity can damage nucleic acids, proteins and lipids, resulting in oncogenic mutations and cell death. ROS are therefore involved in many pathological conditions. On the other hand, ROS present selective toxicity and have been utilised against cancer and pathogens, thus also acting as a double-edged sword in the healthcare field. Injectable antioxidative hydrogels are gel precursors that form hydrogel constructs in situ upon delivery in vivo to maintain an antioxidative capacity. These hydrogels have been developed to counter ROS-induced pathological conditions, with significant advantages of biocompatibility, excellent moldability, and minimally invasive delivery. The intrinsic, readily controllable ROS-scavenging ability of the functionalised hydrogels overcomes many drawbacks of small molecule antioxidants. This review summarises the roles of ROS under pathological conditions and describes the state-of-the-art of injectable antioxidative hydrogels. A particular emphasis is also given to current ROS-producing therapeutic interventions, enabling potential application of injectable antioxidant hydrogels to prevent the adverse effects of many cancer and infection treatments.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio , Animais , Humanos , Injeções , Oxirredução , Transdução de Sinais
14.
ACS Appl Mater Interfaces ; 12(35): 38918-38924, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805952

RESUMO

The rapid development of additive manufacturing techniques in the field of tissue regeneration offers unprecedented success for artificial tissue and organ fabrication. However, some limitations still remain for current bioinks, such as the compromised cell viability after printing, the low cross-linking efficiency leading to poor printing resolution and speed due to the relatively slow gelation rate, and the requirement of external stimuli for gelation. To address these problems, herein, a biocompatible and printable instant gelation hydrogel system has been developed based on a designed hyperbranched poly(ethylene glycol) (PEG)-based multihydrazide macro-cross-linker (HB-PEG-HDZ) and an aldehyde-functionalized hyaluronic acid (HA-CHO). HB-PEG-HDZ is prepared by the postfunctionalization of hyperbranched PEG-based multivinyl macromer via thiol-ene chemistry. Owing to the high functional group density of HB-PEG-HDZ, the hydrogel can be formed instantly upon mixing the solutions of two components. The reversible cross-linking mechanism between the hydrazide and aldehyde groups endows the hydrogel with shear-thinning and self-healing properties. The minimally toxic components and cross-linking chemistry allow the resulting hydrogel to be a biocompatible niche. Moreover, the fast sol-to-gel transition of the hydrogel, combining all of the advanced characteristics of this platform, protects the cells during the printing procedure, avoids their damage during extrusion, and improves the transplanted cell survival.


Assuntos
Materiais Biocompatíveis/química , Técnicas de Cultura de Células/métodos , Hidrogéis/química , Tinta , Células 3T3 , Animais , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células/instrumentação , Sobrevivência Celular , Ácido Hialurônico/química , Camundongos , Polietilenoglicóis/química , Impressão Tridimensional
15.
ACS Appl Mater Interfaces ; 11(34): 30661-30672, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31390173

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe congenital skin fragility disease caused by COL7A1 mutations that result in type VII collagen (C7) deficiency. Herein, we report a synergistic polyplex system that can efficiently restore C7 expression in RDEB keratinocytes. A highly branched multifunctional poly(ß-amino ester) (HPAE), termed as HC32-122, was optimized systematically as the high-performance gene delivery vector for keratinocytes, achieving much higher transfection capability than polyethylenimine, SuperFect, and Lipofectamine 2000 without inducing obvious cytotoxicity. Concurrently, a 12 kb length minicircle DNA encoding ∼9 kb full-length COL7A1 (MCC7) devoid of bacterial sequence was biosynthesized as the therapeutic gene. Combining the highly potent polymer and the miniaturized gene structure, HC32-122/MCC7 polyplexes achieve 96.4% cellular uptake efficiency, 4019-fold COL7A1 mRNA enhancement, and robust recombinant C7 expression. Structure-property investigations reveal that HC32-122 can effectively condense MCC7 to form small, uniform, compact, and positively charged spherical nanoparticles with high DNA release flexibility. Moreover, formulation study shows that sucrose is conductive to lyophilized HC32-122/DNA polyplexes for maintaining the transfection capability. Direct frozen polyplexes can maintain full gene transfection capability after one-year storage. High efficiency, biocompatibility, facile manipulation, and long-term stability make the HC32-122/MCC7 system a promising bench-to-bed candidate for treating the debilitating RDEB.


Assuntos
Colágeno Tipo VII , Epidermólise Bolhosa , Técnicas de Transferência de Genes , Terapia Genética , Queratinócitos , Nanopartículas/química , Animais , Linhagem Celular , Colágeno Tipo VII/biossíntese , Colágeno Tipo VII/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/patologia , Epidermólise Bolhosa/terapia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Polímeros/química , Polímeros/farmacologia
16.
Nano Lett ; 19(1): 381-391, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30565945

RESUMO

Delivery of functional genetic materials into fibroblast cells to manipulate the transgene expression is of great significance in skin gene therapy. Despite numerous polymeric gene delivery systems having been developed, highly safe and efficient fibroblast gene transfection has not yet been achieved. Here, through a new linear oligomer combination strategy, linear poly(ß-amino ester) oligomers are connected by the branching units, forming a new type of poly(ß-amino ester). This new multifunctional linear-branched hybrid poly(ß-amino ester) (LBPAE) shows high-performance fibroblast gene transfection. In human primary dermal fibroblasts (HPDFs) and mouse embryo fibroblasts (3T3s), ultrahigh transgene expression is achieved by LBPAE: up to 3292-fold enhancement in Gaussia luciferase (Gluc) expression and nearly 100% of green fluorescence protein expression are detected. Concurrently, LBPAE is of high in vitro biocompatibility. In depth mechanistic studies reveal that versatile LBPAE can navigate multiple extra- and intracellular barriers involved in the fibroblast gene transfection. More importantly, LBPAE can effectively deliver minicircle DNA encoding  COL7A1 gene (a large and functional gene construct) to substantially upregulate the expression of type VII collagen (C7) in HPDFs, demonstrating its great potential in the treatment of C7-deficiency related genodermatoses such as recessive dystrophic epidermolysis bullosa.


Assuntos
Técnicas de Transferência de Genes , Transfecção , Transgenes/genética , Animais , Ésteres/química , Fibroblastos/metabolismo , Expressão Gênica/genética , Terapia Genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Queratinócitos/metabolismo , Camundongos
17.
ACS Appl Mater Interfaces ; 10(46): 39494-39504, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30376290

RESUMO

Synthetic reactive oxygen species (ROS)-responsive biomaterials have emerged as a useful platform for regulating critical aspects of ROS-induced pathologies and can improve such hostile microenvironments. Here, we report a series of new hyperbranched poly(ß-hydrazide ester) macromers (HB-PBHEs) with disulfide moieties synthesized via an "A2 + B4" Michael addition approach. The three-dimensional structure of HB-PBHEs with multiacrylate end groups endows the macromers with rapid gelation capabilities to form (1) injectable hydrogels via cross-linking with thiolated hyaluronic acid and (2) robust UV-cross-linked hydrogels. The disulfide-containing macromers and hydrogels exhibit H2O2-responsive degradation compared with the counterparts synthesized by a dihydrazide monomer without disulfide moieties. The cell viability under a high ROS environment can be well-maintained under the protection of the disulfide containing hydrogels.


Assuntos
Antioxidantes/química , Azidas/química , Ésteres/química , Hidrogéis/química , Células 3T3 , Adipócitos/citologia , Animais , Compostos de Bifenilo/química , Sobrevivência Celular , Técnicas de Cocultura , DNA/química , Dissulfetos/química , Sequestradores de Radicais Livres/química , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Picratos/química , Conformação Proteica , Espécies Reativas de Oxigênio/química , Reologia , Espectrofotometria Ultravioleta , Células-Tronco/citologia , Engenharia Tecidual
18.
J Tissue Eng Regen Med ; 12(7): 1769-1779, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29785783

RESUMO

Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic Collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin were applied as coatings on sandblasted, acid-etched titanium substrates, and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings.


Assuntos
Substitutos Ósseos , Materiais Revestidos Biocompatíveis , Gelatina , Teste de Materiais , Proteômica , Dióxido de Silício , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Gelatina/química , Gelatina/farmacologia , Camundongos , Coelhos , Dióxido de Silício/química , Dióxido de Silício/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA