Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Elife ; 102021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908345

RESUMO

Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-electron microscopy analysis of late human pre-40S particles purified using a catalytically inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/genética
2.
Open Biol ; 10(8): 200089, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810420

RESUMO

Hsp70 chaperones interact with substrate proteins in a coordinated fashion that is regulated by nucleotides and enhanced by assisting cochaperones. There are numerous homologues and isoforms of Hsp70 that participate in a wide variety of cellular functions. This diversity can facilitate adaption or specialization based on particular biological activity and location within the cell. In this review, we highlight two specialized binding partner proteins, Tim44 and IRE1, that interact with Hsp70 at the membrane in order to serve their respective roles in protein translocation and unfolded protein response signalling. Recent mechanistic data suggest analogy in the way the two Hsp70 homologues (BiP and mtHsp70) can bind and release from IRE1 and Tim44 upon substrate engagement. These shared mechanistic features may underlie how Hsp70 interacts with specialized binding partners and may extend our understanding of the mechanistic repertoire that Hsp70 chaperones possess.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Transporte Proteico , Resposta a Proteínas não Dobradas , Animais , Proteínas de Transporte , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Mitocôndrias/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138239

RESUMO

Assembly of eukaryotic ribosomal subunits is a very complex and sequential process that starts in the nucleolus and finishes in the cytoplasm with the formation of functional ribosomes. Over the past few years, characterization of the many molecular events underlying eukaryotic ribosome biogenesis has been drastically improved by the "resolution revolution" of cryo-electron microscopy (cryo-EM). However, if very early maturation events have been well characterized for both yeast ribosomal subunits, little is known regarding the final maturation steps occurring to the small (40S) ribosomal subunit. To try to bridge this gap, we have used proteomics together with cryo-EM and single particle analysis to characterize yeast pre-40S particles containing the ribosome biogenesis factor Tsr1. Our analyses lead us to refine the timing of the early pre-40S particle maturation steps. Furthermore, we suggest that after an early and structurally stable stage, the beak and platform domains of pre-40S particles enter a "vibrating" or "wriggling" stage, that might be involved in the final maturation of 18S rRNA as well as the fitting of late ribosomal proteins into their mature position.


Assuntos
Proteômica/métodos , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Biologia Computacional , Microscopia Crioeletrônica/métodos , RNA Ribossômico 18S/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Subunidades Ribossômicas Menores/ultraestrutura , Espectrometria de Massas em Tandem
4.
Nat Struct Mol Biol ; 26(11): 1053-1062, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695187

RESUMO

BiP is a major endoplasmic reticulum (ER) chaperone and is suggested to act as primary sensor in the activation of the unfolded protein response (UPR). How BiP operates as a molecular chaperone and as an ER stress sensor is unknown. Here, by reconstituting components of human UPR, ER stress and BiP chaperone systems, we discover that the interaction of BiP with the luminal domains of UPR proteins IRE1 and PERK switch BiP from its chaperone cycle into an ER stress sensor cycle by preventing the binding of its co-chaperones, with loss of ATPase stimulation. Furthermore, misfolded protein-dependent dissociation of BiP from IRE1 is primed by ATP but not ADP. Our data elucidate a previously unidentified mechanistic cycle of BiP function that explains its ability to act as an Hsp70 chaperone and ER stress sensor.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/química , Resposta a Proteínas não Dobradas , eIF-2 Quinase/química
5.
Front Mol Biosci ; 6: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931312

RESUMO

The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as "ER stress." The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.

6.
Elife ; 72018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303481

RESUMO

The unfolded protein response (UPR) is a key signaling system that regulates protein homeostasis within the endoplasmic reticulum (ER). The primary step in UPR activation is the detection of misfolded proteins, the mechanism of which is unclear. We have previously suggested an allosteric mechanism for UPR induction (Carrara et al., 2015) based on qualitative pull-down assays. Here, we develop an in vitro Förster resonance energy transfer (FRET) UPR induction assay that quantifies IRE1 luminal domain and BiP association and dissociation upon addition of misfolded proteins. Using this technique, we reassess our previous observations and extend mechanistic insight to cover other general ER misfolded protein substrates and their folded native state. Moreover, we evaluate the key BiP substrate-binding domain mutant V461F. The new experimental approach significantly enhances the evidence suggesting an allosteric model for UPR induction upon ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regulação Alostérica , Chaperona BiP do Retículo Endoplasmático , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação Proteica
7.
Nucleic Acids Res ; 44(17): 8465-78, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27530427

RESUMO

Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3'-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico 18S/genética , Receptores de Superfície Celular/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Sequência Conservada , Microscopia Crioeletrônica , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Biogênese de Organelas , Ligação Proteica , Receptores de Quinase C Ativada , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA