Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Elife ; 122024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239947

RESUMO

Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.


Drinking excessive amounts of alcohol during pregnancy can cause foetal alcohol spectrum disorder and other conditions in children that affect their physical and mental development. Many countries advise women who are pregnant or trying to conceive to avoid drinking alcohol entirely. However, surveys of large groups of women in Western countries indicate that most women continue drinking low to moderate amounts of alcohol until they discover they are pregnant and then stop consuming alcohol for the rest of their pregnancy. It remains unclear how this common drinking pattern affects the foetus. The instructions needed to build and maintain a human body are stored within molecules of DNA. Some regions of DNA called genes contain the instructions to make proteins, which perform many tasks in the body. Other so-called 'non-coding' regions do not code for any proteins but instead have roles in regulating gene activity. One way cells control which genes are switched on or off is adding or removing tags known as methyl groups to certain locations on DNA. Previous studies indicate that alcohol may affect how children develop by changing the patterns of methyl tags on DNA. To investigate the effect of moderate drinking during the early stages of pregnancy, Bestry et al. exposed pregnant mice to alcohol and examined how this affected the patterns of methyl tags on DNA in their offspring. The experiments found moderate levels of alcohol were sufficient to alter the patterns of methyl tags in the brains and livers of the newborn mice. Most of the changes were observed in non-coding regions of DNA, suggesting alcohol may affect how large groups of genes are regulated. Fewer changes in the patterns of methyl tags were found in mice whose mothers had diets rich in two essential nutrients known as folate and choline. Further experiments found that some of the affected mouse genes were similar to genes linked to foetal alcohol spectrum disorder and other related conditions in humans. These findings highlight the potential risks of consuming even moderate levels of alcohol during pregnancy and suggest that a maternal diet rich in folate and choline may help mitigate some of the harmful effects on the developing foetus.


Assuntos
Metilação de DNA , Efeitos Tardios da Exposição Pré-Natal , Animais , Metilação de DNA/efeitos dos fármacos , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Camundongos , Humanos , Dieta , Masculino , Etanol/efeitos adversos , Etanol/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Transtornos do Espectro Alcoólico Fetal/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/embriologia
2.
Alcohol Alcohol ; 59(5)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39242103

RESUMO

AIMS: This study aimed to investigate acamprosate and naltrexone dispensing patterns in Australia. METHODS: A 10% representative sample of medications subsidized by the Australian Pharmaceutical Benefits Scheme (PBS) was used to identify individuals who were dispensed naltrexone or acamprosate between January 2006 and December 2023. Data were used to examine concurrent dispensing, medication switching and treatment episode length, as well as changes in prevalence and incidence over time. RESULTS: During the study, we identified 22 745 individuals with a total of 117 548 dispensed prescriptions (45.3% naltrexone, 43.0% acamprosate, and 11.7% concurrent dispensing). Alcohol pharmacotherapy dispensing occurred in 1354 per 100 000 individuals. It is estimated that 2.9% of individuals with an alcohol use disorder in Australia are receiving a PBS-listed pharmacological treatment. For both pharmacotherapies, individuals were most likely to be male (60.0%) and 35-54 years of age (56.0%). Individuals were more likely to switch from acamprosate to naltrexone rather than the reverse. From 2006 and 2023, the number of prevalent individuals treated with an alcohol pharmacotherapy significantly increased, driven mainly the use of naltrexone, which more than doubled over the study period. Incident naltrexone-treated individuals were more likely to remain on treatment for the recommended minimum 3-month period compared to acamprosate treated individuals, although overall dispensing for at least 3 months was low (5.1%). CONCLUSIONS: In Australia between 2006 and 2023, rates of naltrexone dispensing have substantially increased, while acamprosate dispensing showed minimal changes. However, the use of alcohol pharmacotherapies remains low compared with the likely prevalence of alcohol use disorders.


Assuntos
Acamprosato , Dissuasores de Álcool , Alcoolismo , Naltrexona , Humanos , Acamprosato/uso terapêutico , Austrália/epidemiologia , Masculino , Feminino , Naltrexona/uso terapêutico , Pessoa de Meia-Idade , Adulto , Dissuasores de Álcool/uso terapêutico , Alcoolismo/tratamento farmacológico , Alcoolismo/epidemiologia , Adulto Jovem , Idoso , Adolescente
4.
Chemosphere ; 362: 142621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880256

RESUMO

BACKGROUND: Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS: Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION: These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.


Assuntos
Biocombustíveis , Camundongos Endogâmicos BALB C , Emissões de Veículos , Animais , Emissões de Veículos/toxicidade , Biocombustíveis/toxicidade , Camundongos , Masculino , Gasolina/toxicidade , Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Exposição por Inalação
5.
Exp Lung Res ; 50(1): 118-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683138

RESUMO

AIM: Treatment options for viral lung infections are currently limited. We aimed to explore the safety and efficacy of inhaled ethanol in an influenza-infection mouse model. MATERIALS AND METHODS: In a safety and tolerability experiment, 80 healthy female BALB/c mice (20 per group) were exposed to nebulized saline (control) or three concentrations of ethanol (40/60/80% ethanol v/v in water) for 3x30-minute periods, with a two-hour break between exposures. In a separate subsequent experiment, 40 Female BALB/c mice were nasally inoculated with 104.5 plaque-forming units of immediate virulence "Mem71" influenza. Infection was established for 48-h before commencing treatment in 4 groups of 10 mice with either nebulized saline (control) or one of 3 different concentrations of ethanol (40/60/80% ethanol v/v in water) for 3x30-minute periods daily over three consecutive days. In both experiments, mouse behavior, clinical scores, weight change, bronchoalveolar lavage cell viability, cellular composition, and cytokine levels, were assessed 24-h following the final exposure, with viral load also assessed after the second experiment. RESULTS: In uninfected BALB/c mice, 3x30-minute exposures to nebulized 40%, 60%, and 80% ethanol resulted in no significant differences in mouse weights, cell counts/viability, cytokines, or morphometry measures. In Mem71-influenza infected mice, we observed a dose-dependent reduction in viral load in the 80%-treated group and potentiation of macrophage numbers in the 60%- and 80%-treated groups, with no safety concerns. CONCLUSIONS: Our data provides support for inhaled ethanol as a candidate treatment for respiratory infections.


Assuntos
Modelos Animais de Doenças , Etanol , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Carga Viral , Animais , Etanol/farmacologia , Etanol/administração & dosagem , Feminino , Administração por Inalação , Camundongos , Carga Viral/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Macrófagos/efeitos dos fármacos , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Aerossóis , Pulmão/efeitos dos fármacos , Pulmão/virologia
6.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L713-L726, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469649

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.NEW & NOTEWORTHY Heparan sulfate storage in the lungs of mucopolysaccharidosis type IIIA (MPS IIIA) mice leads to changes in lung function consistent with those of an obstructive lung disease and includes an increase in lung compliance and airway resistance and a decrease in tissue elastance. In addition, diaphragm muscle contractile strength is reduced, potentially further contributing to lung function impairment. However, no changes in parenchymal lung structure were observed in mice at 20 wk of age.


Assuntos
Resistência das Vias Respiratórias , Diafragma , Mucopolissacaridose III , Alvéolos Pulmonares , Animais , Diafragma/fisiopatologia , Diafragma/patologia , Diafragma/metabolismo , Complacência Pulmonar , Camundongos , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Alvéolos Pulmonares/metabolismo , Mucopolissacaridose III/patologia , Mucopolissacaridose III/fisiopatologia , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/genética , Contração Muscular/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Força Muscular , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/metabolismo , Masculino
7.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982203

RESUMO

Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.


Assuntos
Poluentes Atmosféricos , Masculino , Camundongos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Biocombustíveis/toxicidade , Biocombustíveis/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Enxofre , Inflamação
8.
Toxics ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977055

RESUMO

Despite their increasing popularity, and Australia's unique regulatory environment, how and why Australian adults use e-cigarettes and their perceptions of their safety, efficacy and regulation have not been extensively reported before. In this study, we screened 2217 adult Australians with the aim of assessing these questions in a sample of current or former e-cigarette users. A total of 505 out of 2217 respondents were current or former e-cigarette users, with only these respondents completing the full survey. Key findings of this survey included the high proportion of respondents who indicated they were currently using e-cigarettes (307 out of 2217 = 13.8%), and the high proportion of current e-cigarette users that were also smokers (74.6%). The majority of respondents used e-liquids containing nicotine (70.3%), despite it being illegal in Australia without a prescription, and the majority bought their devices and liquids in Australia (65.7%). Respondents reported using e-cigarettes in a variety of places, including inside the home, inside public places (where it is illegal to smoke tobacco cigarettes), and around other people-which has implications for second and third hand exposures. A significant proportion of current e-cigarette users (30.6%) thought that e-cigarettes were completely safe to use long-term, although in general, there was a large amount of uncertainty/ambivalence with respect to perceptions of e-cigarette safety and efficacy as smoking cessation tools. This study shows that e-cigarette use is common in Australia, and that appropriate dissemination of unbiased research findings on their safety and efficacy in smoking cessation is urgently required.

10.
Physiol Behav ; 263: 114118, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796533

RESUMO

INTRODUCTION: Electronic cigarettes (e-cigarettes) are often perceived to be safer than smoking, which has led to some women switching to e-cigarettes during pregnancy. However, the effects of switching from smoking to e-cigarettes on both pregnancy outcomes and the foetus are largely unknown. This study aimed to investigate the effects of switching from tobacco smoking to e-cigarette use in very early pregnancy on birth outcomes, neurodevelopment and behaviour of the offspring. METHODS: Female BALB/c mice were exposed to cigarette smoke for up to two weeks before being mated. Mated dams were then allocated to one of four treatment groups: (i) continued exposure to cigarette smoke (ii) exposure to e-cigarette aerosol with nicotine, (iii) or without nicotine, or (iv) medical air. Pregnant mice were exposed for 2 h per day for the duration of pregnancy. Gestational outcomes including litter size and sex ratio were assessed, in addition to early-life markers of physical- and neuro- development. At 8 weeks of age, motor coordination, anxiety, locomotion, memory and learning of the adult offspring were assessed. RESULTS: Gestational outcomes and early markers of physical- and neuro- development were unaffected by in utero exposure, as well as locomotion, anxiety-like behaviour, and object recognition memory during adulthood. However, both e-cigarette groups displayed increased spatial recognition memory compared to air exposed controls. Maternal exposure to nicotine containing e-cigarette aerosol was found to increase offspring bodyweight and impair motor skill learning. CONCLUSIONS: These results suggest there may be some benefits as well as negative effects of switching to e-cigarettes in early pregnancy.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Efeitos Tardios da Exposição Pré-Natal , Produtos do Tabaco , Gravidez , Humanos , Feminino , Animais , Camundongos , Nicotina , Nicotiana , Aerossóis
12.
Chemosphere ; 310: 136873, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252896

RESUMO

To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread. Exhaust toxicity of unblended biodiesels changes depending on feedstock type, however the effect of feedstock on blended fuels is less well known. The aim of this study was to assess the impact of biodiesel feedstock on exhaust toxicity of 20% blended biodiesel fuels (B20). Primary human airway epithelial cells were exposed to exhaust diluted 1/15 with air from an engine running on conventional ultra-low sulfur diesel (ULSD) or 20% blends of soy, canola, waste cooking oil (WCO), tallow, palm or cottonseed biodiesel in diesel. Physico-chemical exhaust properties were compared between fuels and the post-exposure effect of exhaust on cellular viability and media release was assessed 24 h later. Exhaust properties changed significantly between all fuels with cottonseed B20 being the most different to both ULSD and its respective unblended biodiesel. Exposure to palm B20 resulted in significantly decreased cellular viability (96.3 ± 1.7%; p < 0.01) whereas exposure to soy B20 generated the greatest number of changes in mediator release (including IL-6, IL-8 and TNF-α, p < 0.05) when compared to air exposed controls, with palm B20 and tallow B20 closely following. In contrast, canola B20 and WCO B20 were the least toxic with only mediators G-CSF and TNF-α being significantly increased. Therefore, exposure to palm B20, soy B20 and tallow B20 were found to be the most toxic and exposure to canola B20 and WCO B20 the least. The top three most toxic and the bottom three least toxic B20 fuels are consistent with their unblended counterparts, suggesting that feedstock type greatly impacts exhaust toxicity, even when biodiesel only comprises 20% of the fuel.


Assuntos
Biocombustíveis , Material Particulado , Humanos , Biocombustíveis/toxicidade , Biocombustíveis/análise , Material Particulado/análise , Fator de Necrose Tumoral alfa , Óleo de Sementes de Algodão , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Gasolina/toxicidade , Minerais
13.
Physiol Behav ; 259: 114037, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427542

RESUMO

BACKGROUND: Despite the teratogenic effects of alcohol, little is known about the safety of pharmacotherapies such as acamprosate for the treatment of alcohol use disorders in pregnancy. The aims of this study were to investigate, in a mouse model, the effects of maternally administered acamprosate on maternal and neonatal health, offspring neurodevelopment and behaviour, as well as examine whether acamprosate reduces the neurological harm associated with alcohol consumption in pregnancy. METHODS: Dams were randomly allocated to one of four treatment groups: (i) control (water), (ii) acamprosate (1.6 g/L), (iii) alcohol (5% v/v) or (iv) acamprosate and alcohol (1.6 g/L; 5% v/v ethanol) and exposed from 2-weeks pre-pregnancy until postpartum day 7. Gestational outcomes including litter size and sex ratio were assessed, in addition to early-life markers of neurodevelopment. At 8 weeks of age, motor coordination, anxiety, locomotion, and memory of the adult offspring were also examined. RESULTS: Exposure to acamprosate did not affect maternal and birth outcomes (mating success, gestational weight gain, litter size, sex ratio), neonatal outcomes (head and body length, postnatal weight) or neurodevelopmental markers (righting reflex and negative geotaxis). Acamprosate exposure did not affect offspring motor control, locomotion or anxiety, however the effects on short-term memory remain uncertain. Prenatal alcohol exposed offspring exhibited various alterations, such as lower postnatal weight, smaller head (p = 0.04) and body lengths (p = 0.046) at postnatal day 70 (males only), increased negative geotaxis speed (p = 0.03), an increased time spent in the inner zone of the open field (p = 0.02). Acamprosate mitigated the effects of alcohol for negative geotaxis at postnatal day 7 (p = 0.01) and female offspring weight at postnatal day 70 (p = 0.03). CONCLUSIONS: Overall, we show that prenatal acamprosate exposure was not associated with poor maternal or neonatal health outcomes or impaired neurodevelopment and behaviour. However, acamprosate's effects on short-term memory remain uncertain. We present preliminary evidence to suggest acamprosate displayed some neuroprotective effects against damage caused by in utero alcohol exposure.


Assuntos
Alcoolismo , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Animais , Masculino , Humanos , Feminino , Acamprosato , Reprodução , Etanol
14.
Microbiol Resour Announc ; 11(12): e0095322, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36416544

RESUMO

We identified a double-stranded DNA (dsDNA) bacteriophage appearing to belong to Herelleviridae, genus Kayvirus. The bacteriophage, Biyabeda-mokiny 1, was isolated from breast milk using a clinical isolate of Staphylococcus aureus. The genome is 141,091 bp in length and encodes 230 putative coding sequences.

15.
Microbiol Resour Announc ; 11(12): e0095422, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36409081

RESUMO

Two lytic double-stranded DNA (dsDNA) bacteriophages, belonging to the family Herelleviridae, were isolated from wastewater in Western Australia. Biyabeda-mokiny 2 appears to belong to the genus Kayvirus, and Koomba-kaat 1 to Silviavirus.

17.
Sci Total Environ ; 832: 155016, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381248

RESUMO

Biodiesel is created through the transesterification of fats/oils and its usage is increasing worldwide as global warming concerns increase. Biodiesel fuel properties change depending on the feedstock used to create it. The aim of this study was to assess the different toxicological properties of biodiesel exhausts created from different feedstocks using a complex 3D air-liquid interface (ALI) model that mimics the human airway. Primary human airway epithelial cells were grown at ALI until full differentiation was achieved. Cells were then exposed to 1/20 diluted exhaust from an engine running on Diesel (ULSD), pure or 20% blended Canola biodiesel and pure or 20% blended Tallow biodiesel, or Air for control. Exhaust was analysed for various physio-chemical properties and 24-h after exposure, ALI cultures were assessed for permeability, protein release and mediator response. All measured exhaust components were within industry safety standards. ULSD contained the highest concentrations of various combustion gases. We found no differences in terms of particle characteristics for any of the tested exhausts, likely due to the high dilution used. Exposure to Tallow B100 and B20 induced increased permeability in the ALI culture and the greatest increase in mediator response in both the apical and basal compartments. In contrast, Canola B100 and B20 did not impact permeability and induced the smallest mediator response. All exhausts but Canola B20 induced increased protein release, indicating epithelial damage. Despite the concentrations of all exhausts used in this study meeting industry safety regulations, we found significant toxic effects. Tallow biodiesel was found to be the most toxic of the tested fuels and Canola the least, both for blended and pure biodiesel fuels. This suggests that the feedstock biodiesel is made from is crucial for the resulting health effects of exhaust exposure, even when not comprising the majority of fuel composition.


Assuntos
Poluentes Atmosféricos , Biocombustíveis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Biocombustíveis/análise , Biocombustíveis/toxicidade , Células Epiteliais , Gasolina/análise , Humanos , Material Particulado/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
20.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L683-L698, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348023

RESUMO

Excessive production, secretion, and retention of abnormal mucus is a pathological feature of many obstructive airways diseases including asthma. Azithromycin is an antibiotic that also possesses immunomodulatory and mucoregulatory activities, which may contribute to the clinical effectiveness of azithromycin in asthma. The current study investigated these nonantibiotic activities of azithromycin in mice exposed daily to intranasal house dust mite (HDM) extract for 10 days. HDM-exposed mice exhibited airways hyperresponsiveness to aerosolized methacholine, a pronounced mixed eosinophilic and neutrophilic inflammatory response, increased airway smooth muscle (ASM) thickness, and elevated levels of epithelial mucin staining. Azithromycin (50 mg/kg sc, 2 h before each HDM exposure) attenuated HDM-induced airways hyperresponsiveness to methacholine, airways inflammation (bronchoalveolar lavage eosinophil and neutrophils numbers, and IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, and RANTES levels), and epithelial mucin staining (mucous metaplasia) by at least 50% (compared with HDM-exposed mice, P < 0.05). Isolated tracheal segments of HDM-exposed mice secreted Muc5ac and Muc5b (above baseline levels) in response to exogenous ATP. Moreover, ATP-induced secretion of mucins was attenuated in segments obtained from azithromycin-treated, HDM-exposed mice (P < 0.05). In additional ex vivo studies, ATP-induced secretion of Muc5ac (but not muc5b) from HDM-exposed tracheal segments was inhibited by in vitro exposure to azithromycin. In vitro azithromycin also inhibited ATP-induced secretion of Muc5ac and Muc5b in tracheal segments from IL-13-exposed mice. In summary, azithromycin inhibited ATP-induced mucin secretion and airways inflammation in HDM-exposed mice, both of which are likely to contribute to suppression of airways hyperresponsiveness.


Assuntos
Asma , Pyroglyphidae , Trifosfato de Adenosina , Alérgenos , Animais , Asma/patologia , Azitromicina/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Interleucina-13 , Metaplasia , Cloreto de Metacolina , Camundongos , Mucinas , Muco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA