Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Dev Cell ; 58(24): 2881-2895.e7, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37967560

RESUMO

Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems. By mouse intraspecies blastocyst complementation, we rescued heart and vascular system development separately and in combination, obtaining complemented hearts with cardiomyocytes and endothelial cells of exogenous origin. Complemented chimeras were viable and reached adult stage, showing normal cardiac function and no signs of histopathological defects in the heart. Furthermore, we implemented the cell ablation system for rat-to-mouse blastocyst complementation, obtaining xenogeneic hearts whose cardiomyocytes were completely of rat origin. These results represent an advance in the experimentation towards the in vivo generation of transplantable organs.


Assuntos
Sistema Cardiovascular , Coração , Células-Tronco Pluripotentes , Animais , Camundongos , Ratos , Blastocisto , Células Endoteliais , Miócitos Cardíacos , Coração/embriologia , Sistema Cardiovascular/embriologia
2.
Stem Cell Res ; 71: 103189, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37660554

RESUMO

Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a life-threatening disease caused by the abnormal production of misfolded TTR protein by liver cells, which is then released systemically. Its amyloid deposition in the heart is linked to cardiac toxicity and progression toward heart failure. A human induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells (PBMCs) from a patient suffering familial transthyretin amyloid cardiomyopathy carrying a c.128G>A (p.Ser43Asn) mutation in the TTR gene. This iPSC line offers a useful resource to study the disease pathophysiology and a cell-based model for therapeutic discovery.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Pré-Albumina/genética , Leucócitos Mononucleares , Mutação/genética , Cardiomiopatias/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-37566441

RESUMO

Ischemic heart disease is one of the leading causes of death worldwide. The efficient delivery of therapeutic growth factors could counteract the adverse prognosis of post-myocardial infarction (post-MI). In this study, a collagen hydrogel that is able to load and appropriately deliver pro-angiogenic stromal cell-derived factor 1 (SDF1) was physically coupled with a compact collagen membrane in order to provide the suture strength required for surgical implantation. This bilayer collagen-on-collagen scaffold (bCS) showed the suitable physicochemical properties that are needed for efficient implantation, and the scaffold was able to deliver therapeutic growth factors after MI. In vitro collagen matrix biodegradation led to a sustained SDF1 release and a lack of cytotoxicity in the relevant cell cultures. In vivo intervention in a rat subacute MI model resulted in the full integration of the scaffold into the heart after implantation and biocompatibility with the tissue, with a prevalence of anti-inflammatory and pro-angiogenic macrophages, as well as evidence of revascularization and improved cardiac function after 60 days. Moreover, the beneficial effect of the released SDF1 on heart remodeling was confirmed by a significant reduction in cardiac tissue stiffness. Our findings demonstrate that this multimodal scaffold is a desirable matrix that can be used as a drug delivery system and a scaffolding material to promote functional recovery after MI.

4.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289614

RESUMO

Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.

5.
Pharmaceutics ; 13(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34452230

RESUMO

The use of allogeneic adipose-derived mesenchymal stromal cells (alloADSCs) represents an attractive approach for treating myocardial infarction (MI). Furthermore, adding a natural support improves alloADSCs engraftment and survival in heart tissues, leading to a greater therapeutic effect. We aimed to examine the safety and immunological reaction induced by epicardial implantation of a clinical-grade collagen scaffold (CS) seeded with alloADSCs for its future application in humans. Thus, cellularized scaffolds were myocardially or subcutaneously implanted in immunosuppressed rodent models. The toxicological parameters were not significantly altered, and tumor formation was not found over the short or long term. Furthermore, biodistribution analyses in the infarcted immunocompetent rats displayed cell engraftment in the myocardium but no migration to other organs. The immunogenicity of alloADSC-CS was also evaluated in a preclinical porcine model of chronic MI; no significant humoral or cellular alloreactive responses were found. Moreover, CS cellularized with human ADSCs cocultured with human allogeneic immune cells produced no alloreactive response. Interestingly, alloADSC-CS significantly inhibited lymphocyte responses, confirming its immunomodulatory action. Thus, alloADSC-CS is likely safe and does not elicit any alloreactive immunological response in the host. Moreover, it exerts an immunomodulatory action, which supports its translation to a clinical setting.

6.
J Tissue Eng Regen Med ; 14(1): 123-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677236

RESUMO

Adeno-associated viruses (AAV) have become one of the most promising tools for gene transfer in clinics. Among all the serotypes, AAV9 has been described as the most efficient for cardiac transduction. In order to achieve optimal therapeutic delivery in heart disease, we have explored AAV9 transduction efficiency in an infarcted heart using different routes of administration and promoters, including a cardiac-specific one. AAV9 vectors carrying luciferase or green fluorescence protein under the control of the ubiquitous elongation-factor-1-alpha or the cardiac-specific troponin-T (TnT) promoters were administered by intramyocardial or intravenous injection, either in healthy or myocardial-infarcted mice. The transduction efficacy and specificity, the time-course expression, and the safety of each vector were tested. High transgene expression levels were found in the heart, but not in the liver, of mice receiving AAV-TnT, which was significantly higher after intramyocardial injection regardless of ischemia-induction. On the contrary, high hepatic transgene expression levels were detected with the elongation-factor-1-alpha-promoter, independently of the administration route and heart damage. Moreover, tissue-specific green fluorescence protein expression was found in cardiomyocytes with the TnT vector, whereas minimal cardiac expression was detected with the ubiquitous one. Interestingly, we found that myocardial infarction greatly increased the transcriptional activity of AAV genomes. Our findings show that the use of cardiac promoters allows for specific and stable cardiac gene expression, which is optimal and robust when intramyocardially injected. Furthermore, our data indicate that the pathological status of the tissue can alter the transcriptional activity of AAV genomes, an aspect that should be carefully evaluated for clinical applications.


Assuntos
Dependovirus/genética , Isquemia Miocárdica/patologia , Animais , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Genoma Viral , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Coração/fisiologia , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Distribuição Tecidual , Transdução Genética , Transgenes , Troponina T/metabolismo
7.
FASEB J ; 33(6): 7578-7587, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30892966

RESUMO

Macrophages play a central role in tissue remodeling, repair, and resolution of inflammation. Macrophage polarization to M1 or M2 activation status may determine the progression or resolution of the inflammatory response. We have previously reported that cardiotrophin-1 (CT-1) displays both cytoprotective and metabolic activities. The role of CT-1 in inflammation remains poorly understood. Here, we employed recombinant CT-1 (rCT-1) and used CT-1-null mice and myeloid-specific CT-1 transgenic mice to investigate whether CT-1 might play a role in the modulation of the inflammatory response. We observed that CT-1 deficiency was associated with enhanced release of inflammatory mediators and with stronger activation of NF-κB in response to LPS, whereas the inflammatory response was attenuated in CT-1 transgenic mice or by administering rCT-1 to wild-type animals prior to LPS challenge. We found that CT-1 promoted IL-6 expression only by nonhematopoietic cells, whereas LPS up-regulated IL-6 expression in both hematopoietic and nonhematopoietic cells. Notably, rCT-1 inhibited LPS-mediated soluble IL-6R induction. Using IL-6-/- mice, we showed that rCT-1 inhibited LPS-induced TNF-α and IFN-γ response in an IL-6-independent manner. Importantly, we demonstrated that CT-1 primes macrophages for IL-4-dependent M2 polarization by inducing IL-4 receptor expression. Mechanistic analyses showed that the signal transducer and activator of transcription 3-suppressor of cytokine signaling 3 axis mediates this effect. Our findings support the notion that CT-1 is a critical regulator of inflammation and suggest that rCT-1 could be a molecule with potential therapeutic application in inflammatory conditions.-Carneros, D., Santamaría, E. M., Larequi, E., Vélez-Ortiz, J. M., Reboredo, M., Mancheño, U., Perugorria, M. J., Navas, P., Romero-Gómez, M., Prieto, J., Hervás-Stubbs, S., Bustos, M. Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization.


Assuntos
Polaridade Celular , Citocinas/fisiologia , Inflamação/prevenção & controle , Interleucina-4/fisiologia , Macrófagos/citologia , Animais , Interleucina-6/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
J Transl Med ; 15(1): 56, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28288654

RESUMO

BACKGROUND: The safety and efficacy of cardiac stem/progenitor cells (CSC) have been demonstrated in previous preclinical and clinical assays for heart failure. However, their optimal delivery route to the ischemic heart has not yet been assessed. This study was designed to determine by a non-invasive imaging technique (PET/CT) the biodistribution and acute retention of allogeneic pig CSC implanted by two different delivery routes, intracoronary (IC) and intramyocardial (IM), in a swine preclinical model of chronic ischemia-reperfusion. METHODS: Ischemia-reperfusion was induced in six Goettingen hybrid minipigs by 90 min coronary artery occlusion followed by reperfusion. Thirty days later, animals were allocated to receive IC (n = 3) or NOGA®-guided IM injection (n = 3) of 50 million of 18F-FDG/GFP-labeled allogeneic pig CSC. Acute retention was quantified by PET/CT 4 h after injection and cell engraftment assessed by immunohistochemical quantification of GFP+ cells three days post-injection. RESULTS: Biodistribution of 18F-FDG-labeled CSC was clearly visualized by PET/CT imaging and quantified. No statistical differences in acute cell retention (percentage of injected dose, %ID) were found in the heart when cells were administered by NOGA®-guided IM (13.4 ± 3.4%ID) or IC injections (17.4 ± 4.1%ID). Interestingly, engrafted CSC were histologically detected only after IM injection. CONCLUSION: PET/CT imaging of 18F-FDG-labeled CSC allows quantifying biodistribution and acute retention of implanted cells in a clinically relevant pig model of chronic myocardial infarction. Similar levels of acute retention are achieved when cells are IM or IC administered. However, acute cell retention does not correlate with cell engraftment, which is improved by IM injection.


Assuntos
Diagnóstico por Imagem/métodos , Injeções , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Separação Celular , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18/química , Glucosamina/análogos & derivados , Glucosamina/química , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Sus scrofa , Distribuição Tecidual
9.
J Lipid Res ; 55(12): 2634-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25351614

RESUMO

Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the regulation of lipolysis were evaluated in 3T3-L1 adipocytes and in mice. rCT-1 treatment stimulated basal glycerol release in a concentration- and time-dependent manner in 3T3-L1 adipocytes. rCT-1 (20 ng/ml for 24 h) raised cAMP levels, and in parallel increased protein kinase (PK)A-mediated phosphorylation of perilipin and hormone sensitive lipase (HSL) at Ser660. siRNA knock-down of HSL or PKA, as well as pretreatment with the PKA inhibitor H89, blunted the CT-1-induced lipolysis, suggesting that the lipolytic action of CT-1 in adipocytes is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased adipose triglyceride lipase (desnutrin) content in adipose tissue. These results showed that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects.


Assuntos
Adipócitos Brancos/metabolismo , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Lipase/metabolismo , Lipólise , Fosfoproteínas/metabolismo , Esterol Esterase/metabolismo , Regulação para Cima , Células 3T3-L1 , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/enzimologia , Animais , Proteínas de Transporte/biossíntese , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/genética , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Inativação Gênica , Lipase/antagonistas & inibidores , Lipase/química , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Mutantes , Perilipina-1 , Fosfoproteínas/biossíntese , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esterol Esterase/antagonistas & inibidores , Esterol Esterase/química , Esterol Esterase/genética , Regulação para Cima/efeitos dos fármacos
10.
J Hepatol ; 60(5): 1017-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24362075

RESUMO

BACKGROUND & AIMS: Cardiotrophin-1 (CT-1) is a hepatoprotective cytokine that modulates fat and glucose metabolism in muscle and adipose tissue. Here we analyzed the changes in hepatic fat stores induced by recombinant CT-1 (rCT-1) and its therapeutic potential in non-alcoholic fatty liver disease (NAFLD). METHODS: rCT-1 was administered to two murine NAFLD models: ob/ob and high fat diet-fed mice. Livers were analyzed for lipid composition and expression of genes involved in fat metabolism. We studied the effects of rCT-1 on lipogenesis and fatty acid (FA) oxidation in liver cells and the ability of dominant negative inhibitor of AMP-activated protein kinase (AMPK) to block these effects. RESULTS: CT-1 was found to be upregulated in human and murine steatotic livers. In two NAFLD mouse models, treatment with rCT-1 for 10days induced a marked decrease in liver triglyceride content with augmented proportion of poly-unsaturated FA and reduction of monounsaturated species. These changes were accompanied by attenuation of inflammation and improved insulin signaling. Chronic administration of rCT-1 caused downregulation of lipogenic genes and genes involved in FA import to hepatocytes together with amelioration of ER stress, elevation of NAD(+)/NADH ratio, phosphorylation of LKB1 and AMPK, increased expression and activity of sirtuin1 (SIRT1) and upregulation of genes mediating FA oxidation. rCT-1 potently inhibited de novo lipogenesis and stimulated FA oxidation in liver cells both in vitro and in vivo. In vitro studies showed that these effects are mediated by activated AMPK. CONCLUSIONS: rCT-1 resolves hepatic steatosis in obese mice by mechanisms involving AMPK activation. rCT-1 deserves consideration as a potential therapy for NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Citocinas/genética , Citocinas/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ativação Enzimática , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
11.
Oncoimmunology ; 1(9): 1527-1536, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23264899

RESUMO

Cardiotrophin-1 (CT-1/CTF1) is a member of the interleukin-6 (IL-6) family of cytokines that stimulates STAT-3 phosphorylation in cells bearing the cognate receptor. We report that Ctf1(-/-) mice (hereby referred to as CT-1(-/-) mice) are resistant to the hepatic engraftment of MC38 colon carcinoma cells, while these cells engraft normally in the mouse subcutaneous tissue. Tumor intake in the liver could be enhanced by the systemic delivery of a recombinant adenovirus encoding CT-1, which also partly rescued the resistance of CT-1(-/-) mice to the hepatic engraftment of MC38 cells. Moreover, systemic treatment of wild-type (WT) mice with a novel antibody-neutralizing mouse CT-1 also reduced engraftment of this model. Conversely, experiments with Panc02 pancreatic cancer and B16-OVA melanoma cells in CT-1(-/-) mice revealed rates of hepatic engraftment similar to those observed in WT mice. The mechanism whereby CT-1 renders the liver permissive for MC38 metastasis involves T lymphocytes and natural killer (NK) cells, as shown by selective depletion experiments and in genetically deficient mice. However, no obvious changes in the number or cell killing capacity of liver lymphocytes in CT-1(-/-) animals could be substantiated. These findings demonstrate that the seed and soil concept to understand metastasis can be locally influenced by cytokines as well as by the cellular immune system.

12.
Cell Metab ; 14(2): 242-53, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21803294

RESUMO

Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines. We observed that ct-1(-/-) mice develop mature-onset obesity, insulin resistance, and hypercholesterolemia despite reduced calorie intake. Decreased energy expenditure preceded and accompanied the development of obesity. Acute treatment with rCT-1 decreased blood glucose in an insulin-independent manner and increased insulin-stimulated AKT phosphorylation in muscle. These changes were associated with stimulation of fatty acid oxidation, an effect that was absent in AMPKα2(-/-) mice. Chronic rCT-1 treatment reduced food intake, enhanced energy expenditure, and induced white adipose tissue remodeling characterized by upregulation of genes implicated in the control of lipolysis, fatty acid oxidation, and mitochondrial biogenesis and genes typifying brown fat phenotype. Moreover, rCT-1 reduced body weight and corrected insulin resistance in ob/ob and in high-fat-fed obese mice. We conclude that CT-1 is a master regulator of fat and glucose metabolism with potential applications for treatment of obesity and insulin resistance.


Assuntos
Citocinas/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Citocinas/deficiência , Citocinas/farmacologia , Ingestão de Alimentos , Metabolismo Energético , Ácidos Graxos/metabolismo , Hipercolesterolemia/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Oxirredução , Fosforilação
13.
Meat Sci ; 85(2): 274-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20374898

RESUMO

A new formulation of dry fermented sausage, including ingredients that improve the nutritional and health benefits of this type of product is presented. Se yeast (2g/kg), iodized salt (26g/kg), linseed:algae (3:2) emulsion (62.5g/kg), and lyophilized water extract of Melissa officinalis L. as a source of natural antioxidants (686mg/kg), yielded dry fermented sausages with technological and sensory properties similar to traditional ones. From the nutritional standpoint, a 50g portion of this product would give 100% of the recommended daily intake for Se, 70% of DRI for iodine, and 40% and 100% of the reference intake for alpha-linolenic and EPA+DHA, respectively. The omega-6/omega-3 ratio decreased from 15.7 in the control product to 1.96 in the modified one. Despite the high PUFA content, no oxidation was detected by TBARS (<0.15mgMDA/kg) and volatile compounds, showing the effectiveness of the natural antioxidants from M. officinalis. The modified formulation presented good acceptability for panelists with similar appearance, odor, taste and juiciness as the control products.


Assuntos
Antioxidantes/química , Ácidos Graxos Ômega-3/química , Iodo/química , Produtos da Carne/análise , Melissa/química , Selênio/química , Animais , Fermentação , Manipulação de Alimentos , Extratos Vegetais/química , Suínos
14.
Meat Sci ; 83(2): 271-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20416739

RESUMO

An evaluation of the capacity of a lyophilized water extract of borage leaves to delay the lipid oxidation process in dry fermented sausages enriched with ω-3 PUFAs has been performed. Lyophilized extract (340ppm) showed an antioxidant capacity equivalent to 200ppm of a butylhydroxyanisol (BHA) and butylhydroxytoluene (BHT) mixture. Two batches of dry fermented sausages enriched in ω-3 PUFA were developed. One of them was supplemented with a synthetic antioxidants mixture (200ppm of BHA+BHT) and the other one with natural antioxidants (340ppm of lyophilized water extract of borage leaves). Furthermore, a traditional formulation of this type of dry fermented sausage (Control), was also manufactured. The natural extract gave rise to lower amount of volatile compounds (including hexanal), than the mixture of synthetic antioxidants (2202 and 2713ng dodecane/g dry matter, respectively). TBARS and Cholesterol Oxidation Products (COPs) did not show significant differences between products with different antioxidants. The sensorial analysis showed that lyophilized water extracts of borage leaves did not affect the sensorial properties of the products. From the economical and safety standpoints, the use of a by-product (borage leaves) and water as extracting solvent are valuable alternatives for obtaining natural antioxidants to be added to dry fermented sausages enriched in ω-3 PUFA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA