Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 369: 128469, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509309

RESUMO

The development and sustainability of second-generation biorefineries are essential for the production of high added value compounds and biofuels and their application at the industrial level. Pretreatment is one of the most critical stages in biomass processing. In this specific case, hydrothermal pretreatments (liquid hot water [LHW] and steam explosion [SE]) are considered the most promising process for the fractionation, hydrolysis and structural modifications of biomass. This review focuses on architecture of the plant cell wall and composition, fundamentals of hydrothermal pretreatment, process design integration, the techno-economic parameters of the solubilization of lignocellulosic biomass (LCB) focused on the operational costs for large-scale process implementation and the global manufacturing cost. In addition, profitability indicators are evaluated between the value-added products generated during hydrothermal pretreatment, advocating a biorefinery implementation in a circular economy framework. In addition, this review includes an analysis of environmental aspects of sustainability involved in hydrothermal pretreatments.


Assuntos
Vapor , Água , Biomassa , Análise Custo-Benefício , Biocombustíveis , Lignina
2.
Springerplus ; 2: 493, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130960

RESUMO

The enzymatic starch hydrolysis and bioethanol production from a variety of sweet potato developed for bioenergy purposes (K 9807.1) on the basis of its high starch yields, was studied. Drying at 55°C and 95°C of sweet potato neither affected the sugar content nor the starch enzymatic hydrolysis efficiency. Simultaneous saccharification and ethanol fermentations for dry matter ratio of sweet potato to water from 1:8 to 1:2 (w/v) were studied. Fresh sweet potato and dried at 55°C (flour) were assayed. At ratios of 1:8, similar results for fresh sweet potato and flour in terms of ethanol concentration (38-45 g/L), fermentation time (16 h) and sugar conversion (~ 100%) were found. At higher dry matter content, faster full conversion were observed using flour. A higher ratio than that for fresh sweet potato (1:2.2) did not improve the final ethanol concentration (100 g/L) and yields. High ethanol yields were found for VHG (very high gravity) conditions. The sweet potato used is an attractive raw matter for fuel ethanol, since up to 4800 L ethanol per hectare can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA