Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048053

RESUMO

Hyperactive sphingosine 1-phosphate (S1P) signaling is associated with a poor prognosis of triple-negative breast cancer (TNBC). Despite recent evidence that links the S1P receptor 1 (S1P1) to TNBC cell survival, its role in TNBC invasion and the underlying mechanisms remain elusive. Combining analyses of human TNBC cells with zebrafish xenografts, we found that phosphorylation of S1P receptor 1 (S1P1) at threonine 236 (T236) is critical for TNBC dissemination. Compared to luminal breast cancer cells, TNBC cells exhibit a significant increase of phospho-S1P1 T236 but not the total S1P1 levels. Misexpression of phosphorylation-defective S1P1 T236A (alanine) decreases TNBC cell migration in vitro and disease invasion in zebrafish xenografts. Pharmacologic disruption of S1P1 T236 phosphorylation, using either a pan-AKT inhibitor (MK2206) or an S1P1 functional antagonist (FTY720, an FDA-approved drug for treating multiple sclerosis), suppresses TNBC cell migration in vitro and tumor invasion in vivo. Finally, we show that human TNBC cells with AKT activation and elevated phospho-S1P1 T236 are sensitive to FTY720-induced cytotoxic effects. These findings indicate that the AKT-enhanced phosphorylation of S1P1 T236 mediates much of the TNBC invasiveness, providing a potential biomarker to select TNBC patients for the clinical application of FTY720.


Assuntos
Cloridrato de Fingolimode , Receptores de Esfingosina-1-Fosfato , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Cloridrato de Fingolimode/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Treonina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Peixe-Zebra/metabolismo
2.
Nanoscale ; 11(46): 22316-22327, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31724677

RESUMO

New ultrabright fluorescent silica nanoparticles capable of the fast targeting of epithelial tumors in vivo are presented. The as-synthesized folate-functionalized ultrabright particles of 30-40 nm are 230 times brighter than quantum dots (QD450) and 50% brighter than the polymer dots with similar spectra (excitation 365 nm and emission 486 nm). To decrease non-specific targeting, particles are coated with polyethylene glycol (PEG). We demonstrate the in vivo targeting of xenographic human cervical epithelial tumors (HeLa cells) using zebrafish as a model system. The particles target tumors (and probably even individual HeLa cells) as small as 10-20 microns within 20-30 minutes after blood injection. To demonstrate the advantages of ultrabrightness, we repeated the experiments with similar but 200× less bright particles. Compared to those, ultrabright particles showed ∼3× faster tumor detection and ∼2× higher relative fluorescent contrast of tumors/cancer cells.


Assuntos
Nanopartículas/química , Neoplasias/diagnóstico por imagem , Dióxido de Silício/química , Animais , Feminino , Ácido Fólico/química , Células HeLa , Humanos , Imagem Óptica , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Transplante Heterólogo , Peixe-Zebra
3.
Adv Exp Med Biol ; 916: 335-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165361

RESUMO

Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.


Assuntos
Modelos Animais de Doenças , Leucemia/patologia , Animais , Hematopoese , Humanos , Leucemia/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA