Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunology ; 171(3): 428-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38097893

RESUMO

The type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Glicosilação , Fragmentos Fc das Imunoglobulinas/genética , Linfócitos B/metabolismo , Células Clonais/metabolismo
2.
EBioMedicine ; 87: 104408, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529104

RESUMO

BACKGROUND: Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS: Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS: Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION: Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING: LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , Imunoglobulina G , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Antivirais , Vacinação
3.
Trends Immunol ; 43(10): 800-814, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36008258

RESUMO

Healthy immune responses require efficient protection without excessive inflammation. Recent discoveries on the degree of fucosylation of a human N-linked glycan at a conserved site in the immunoglobulin IgG-Fc domain might add an additional regulatory layer to adaptive humoral immunity. Specifically, afucosylation of IgG-Fc enhances the interaction of IgG with FcγRIII and thereby its activity. Although plasma IgG is generally fucosylated, afucosylated IgG is raised in responses to enveloped viruses and Plasmodium falciparum proteins expressed on infected erythrocytes, as well as during alloimmune responses. Moreover, while afucosylation can exacerbate some infectious diseases (e.g., COVID-19), it also correlates with traits of protective immunity against malaria and HIV-1. Herein we discuss the implications of IgG afucosylation for health and disease, as well as for vaccination.


Assuntos
COVID-19 , Imunidade Humoral , Glicosilação , Humanos , Imunoglobulina G , Polissacarídeos
4.
Methods Mol Biol ; 2470: 673-678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881382

RESUMO

Enzyme-linked immunosorbent assays (ELISA) have a wide range of applications, ranging from specific antibody titer determination to quantification of any biological or non-biological substance with a specific binding partner (usually an antibody). The activity of biological cascades, such as the complement cascade of the innate immune system, can also be assessed by ELISA. We present here an assay optimized for the detection of the activation of the classical complement pathway by polyclonal and monoclonal antibodies (mAbs) specific for Plasmodium falciparum-infected erythrocyte surface antigens.


Assuntos
Malária Falciparum , Plasmodium falciparum , Anticorpos Antiprotozoários , Antígenos de Protozoários , Antígenos de Superfície/metabolismo , Via Clássica do Complemento , Ensaio de Imunoadsorção Enzimática , Eritrócitos/metabolismo , Humanos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
5.
EBioMedicine ; 81: 104109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35752106

RESUMO

BACKGROUND: Immunoglobulin G (IgG) antibodies serve a crucial immuno-protective function mediated by IgG Fc receptors (FcγR). Absence of fucose on the highly conserved N-linked glycan in the IgG Fc domain strongly enhances IgG binding and activation of myeloid and natural killer (NK) cell FcγRs. Although afucosylated IgG can provide increased protection (malaria and HIV), it also boosts immunopathologies in alloimmune diseases, COVID-19 and dengue fever. Quantifying IgG fucosylation currently requires sophisticated methods such as liquid chromatography-mass spectrometry (LC-MS) and extensive analytical skills reserved to highly specialized laboratories. METHODS: Here, we introduce the Fucose-sensitive Enzyme-linked immunosorbent assay (ELISA) for Antigen-Specific IgG (FEASI), an immunoassay capable of simultaneously quantitating and qualitatively determining IgG responses. FEASI is a two-tier immunoassay; the first assay is used to quantify antigen-specific IgG (IgG ELISA), while the second gives FcγRIIIa binding-dependent readout which is highly sensitive to both the IgG quantity and the IgG Fc fucosylation (FcγR-IgG ELISA). FINDINGS: IgG Fc fucosylation levels, independently determined by LC-MS and FEASI, in COVID-19 responses to the spike (S) antigen, correlated very strongly by simple linear regression (R2=0.93, p < 0.0001). The FEASI method was then used to quantify IgG levels and fucosylation in COVID-19 convalescent plasma which was independently validated by LC-MS. INTERPRETATION: FEASI can be reliably implemented to measure relative and absolute IgG Fc fucosylation and quantify binding of antigen-specific IgG to FcγR in a high-throughput manner accessible to all diagnostic and research laboratories. FUNDING: This work was funded by the Stichting Sanquin Bloedvoorziening (PPOC 19-08 and SQI00041) and ZonMW 10430 01 201 0021.


Assuntos
Fucose , Imunoglobulina G , Receptores de IgG , COVID-19/diagnóstico , COVID-19/terapia , Ensaio de Imunoadsorção Enzimática/métodos , Fucose/química , Fucose/metabolismo , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Receptores de IgG/química , Soroterapia para COVID-19
6.
Trends Parasitol ; 38(6): 428-434, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279381

RESUMO

IgG antibodies are key effector molecules in acquired immunity to Plasmodium falciparum malaria, and the PfEMP1 adhesins expressed on the surface of the infected erythrocytes are crucial immunological targets. The antigen specificity of these antibodies has therefore been a major research focus. However, we recently reported that the Fc domain of naturally induced PfEMP1-specific IgG1 is selectively modified by post-translational omission of fucose from the conserved Fc glycan. The resulting afucosylated IgG has increased affinity for the IgG-Fc-receptor III family (FcγRIII), found on natural killer cells and on subsets of other cells in the immune system. We discuss the implications of these findings for the basic understanding of antimalarial immunity and for the design of improved vaccines against the disease.


Assuntos
Antígenos de Protozoários , Malária Falciparum , Imunidade Adaptativa , Anticorpos Antiprotozoários , Eritrócitos , Humanos , Imunoglobulina G , Plasmodium falciparum , Proteínas de Protozoários
7.
Nat Commun ; 12(1): 5838, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611164

RESUMO

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcγR) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcγRIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria.


Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/imunologia , Feminino , Humanos , Imunoglobulina G/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Gravidez , Vacinação
8.
Science ; 371(6532)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33361116

RESUMO

Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (FcγRIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger FcγRIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , COVID-19/fisiopatologia , Células Cultivadas , Estado Terminal , Citomegalovirus/imunologia , Feminino , Fucose/análise , Glicosilação , HIV/imunologia , Vacinas contra Hepatite B/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/química , Inflamação , Interleucina-6/biossíntese , Interleucina-6/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Parvovirus B19 Humano/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adulto Jovem
9.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29784859

RESUMO

Clinical immunity to malaria is associated with the acquisition of IgG specific for members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens on the surface of infected erythrocytes (IEs). The VAR2CSA subtype of PfEMP1 mediates IE binding in the placenta. VAR2CSA-specific IgG is normally acquired only after exposure to placental parasites. However, it was recently reported that men and children from Colombia often have high levels of functional VAR2CSA-specific IgG. This potentially undermines the current understanding of malaria immunity in pregnant women, and we thus conducted a study to assess further the levels of VAR2CSA-specific IgG in pregnant and nonpregnant Colombians. Plasma IgG against two full-length recombinant PfEMP1 proteins (one of the VAR2CSA type and one not) produced in baculovirus-transfected insect cells was detected frequently among Colombian men, children, and pregnant women with acute or previous malaria exposure. In contrast, IgG reactivity to a homologous full-length VAR2CSA-type protein expressed in Chinese hamster ovary (CHO) cells was low and infrequent among the Colombian plasma samples, as was reactivity to both corresponding native PfEMP1 proteins. Moreover, human and rabbit antibodies specific for Plasmodium vivax Duffy-binding protein (PvDBP), a protein with some homology to PfEMP1, did not react with VAR2CSA-type recombinant or native proteins, although the mouse monoclonal and PvDBP-specific antibody 3D10 was weakly reactive with recombinant proteins expressed in baculovirus-transfected insect cells. Our data indicate that the previously reported Colombian IgG reactivity to recombinant VAR2CSA is not malaria specific and that the acquisition of VAR2CSA-specific IgG is restricted to pregnancy, in Colombia and elsewhere.


Assuntos
Antígenos de Protozoários/imunologia , Reações Falso-Positivas , Imunoensaio/métodos , Imunoglobulina G/sangue , Malária Falciparum/imunologia , Malária Vivax/imunologia , Complicações Infecciosas na Gravidez/imunologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Colômbia , Feminino , Glicosilação , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Gravidez , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Adulto Jovem
10.
Front Immunol ; 9: 3088, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666256

RESUMO

Members of the PfEMP1 protein family are expressed on the surface of P. falciparum-infected erythrocytes (IEs), where they contribute to the pathogenesis of malaria and are important targets of acquired immunity. Although the PfEMP1-specific antibody response is dominated by the opsonizing and complement-fixing subclasses IgG1 and IgG3, activation of the classical complement pathway by antibody-opsonized IEs does not appear to be a major immune effector mechanism. To study the molecular background for this, we used ELISA and flow cytometry to assess activation of the classical component pathway by recombinant and native PfEMP1 antigen opsonized by polyclonal and monoclonal PfEMP1-specific human IgG. Polyclonal IgG specific for VAR2CSA-type PfEMP1 purified from a pool of human immune plasma efficiently activated the classical complement pathway when bound to recombinant PfEMP1 in ELISA. In contrast, no activation of complement could be detected by flow cytometry when the same IgG preparation was used to opsonize IEs expressing the corresponding native PfEMP1 antigen. After engineering of a VAR2CSA-specific monoclonal antibody to facilitate its on-target hexamerization, complement activation was detectable in an ELISA optimized for uniform orientation of the immobilized antigen. In contrast, the antibody remained unable to activate complement when bound to native VAR2CSA on IEs. Our data suggest that the display of PfEMP1 proteins on IEs is optimized to prevent activation of the classical complement pathway, and thus represents a hitherto unappreciated parasite strategy to evade acquired immunity to malaria.


Assuntos
Antígenos de Protozoários/imunologia , Via Clássica do Complemento/imunologia , Eritrócitos/parasitologia , Imunoglobulina G/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Superfície/imunologia , Complemento C1q/metabolismo , Complemento C4/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Malária Falciparum/sangue , Fagocitose , Ligação Proteica , Proteínas de Protozoários/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA