Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
HSS J ; 11(2): 117-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26140030

RESUMO

BACKGROUND: Currently, an anteroposterior radiograph of the knee is judged based on a centered position of the patella between the femoral condyles. We are not aware of any anatomic literature supporting this recommendation. QUESTIONS/PURPOSES: Orthogonal images are required for accurate assessment of knee deformity. Although an image with the patella centered at the distal femur is generally accepted as a true anteroposterior (AP) radiograph of the knee, there is minimal anatomic data to support that this view is orthogonal to a true lateral view of the knee where the condyles are overlapped. We designed an anatomical study to test the relationship between these two radiographic views. METHODS: We studied 428 well-preserved cadaveric skeletons ranging from 40 to 79 years of age at death. Centering of the patella was calculated based on distal femoral and patellar widths. Multiple regression analysis was then performed to determine the relationship between patellar centering and age, gender, ethnicity, mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), femoral anteversion, and contralateral centering. RESULTS: Average patellar centering was 0.13 ± 0.04, indicating that the average patella was laterally positioned in the distal femur. Only mLDFA and contralateral centering showed statistically significant independent correlations with patellar centering with modest standardized beta coefficients of 0.10 and 0.23, respectively. CONCLUSIONS: In the average specimen, the patella is laterally deviated by 13% of the condylar width. Clinicians should be aware that a lateral view with the femoral condyles overlapped is not always orthogonal to a patella-centered AP view when planning and implementing deformity correction.

2.
J Bone Miner Res ; 28(3): 608-17, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23018813

RESUMO

The periosteum serves as bone's bounding membrane, exhibits hallmarks of semipermeable epithelial barrier membranes, and contains mechanically sensitive progenitor cells capable of generating bone. The current paucity of data regarding the periosteum's permeability and bidirectional transport properties provided the impetus for the current study. In ovine femur and tibia samples, the periosteum's hydraulic permeability coefficient, k, was calculated using Darcy's Law and a custom-designed permeability tester to apply controlled, volumetric flow of phosphate-buffered saline through periosteum samples. Based on these data, ovine periosteum demonstrates mechanically responsive and directionally dependent (anisotropic) permeability properties. At baseline flow rates comparable to interstitial fluid flow (0.5 µL/s), permeability is low and does not exhibit anisotropy. In contrast, at high flow rates comparable to those prevailing during traumatic injury, femoral periosteum exhibits an order of magnitude higher permeability compared to baseline flow rates. In addition, at high flow rates permeability exhibits significant directional dependence, with permeability higher in the bone to muscle direction than vice versa. Furthermore, compared to periosteum in which the intrinsic tension (pre-stress) is maintained, free relaxation of the tibial periosteum after resection significantly increases its permeability in both flow directions. Hence, the structure and mechanical stress state of periosteum influences its role as bone's bounding membrane. During periods of homeostasis, periosteum may serve as a barrier membrane on the outer surface of bone, allowing for equal albeit low quiescent molecular communication between tissue compartments including bone and muscle. In contrast, increases in pressure and baseline flow rates within the periosteum resulting from injury, trauma, and/or disease may result in a significant increase in periosteum permeability and consequently in increased molecular communication between tissue compartments. Elucidation of the periosteum's permeability properties is key to understanding periosteal mechanobiology in bone health and healing, as well as to elucidate periosteum structure and function as a smart biomaterial that allows bidirectional and mechanically responsive fluid transport.


Assuntos
Periósteo/fisiologia , Animais , Feminino , Permeabilidade , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA