Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117952

RESUMO

Dissecting plant responses to the environment is key to understanding whether and how plants adapt to anthropogenic climate change. Stomata, plants' pores for gas exchange, are expected to decrease in density following increased CO2 concentrations, a trend already observed in multiple plant species. However, it is unclear whether such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191 Arabidopsis thaliana historical herbarium specimens collected over 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a functional score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the past centuries, suggesting a genetic component contributing to this change. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes may have already responded to climate change through adaptive evolution.

2.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712066

RESUMO

The evolution of gene expression responses are a critical component of adaptation to variable environments. Predicting how DNA sequence influences expression is challenging because the genotype to phenotype map is not well resolved for cis regulatory elements, transcription factor binding, regulatory interactions, and epigenetic features, not to mention how these factors respond to environment. We tested if flexible machine learning models could learn some of the underlying cis-regulatory genotype to phenotype map. We tested this approach using cold-responsive transcriptome profiles in 5 diverse Arabidopsis thaliana accessions. We first tested for evidence that cis regulation plays a role in environmental response, finding 14 and 15 motifs that were significantly enriched within the up- and down-stream regions of cold-responsive differentially regulated genes (DEGs). We next applied convolutional neural networks (CNNs), which learn de novo cis-regulatory motifs in DNA sequences to predict expression response to environment. We found that CNNs predicted differential expression with moderate accuracy, with evidence that predictions were hindered by biological complexity of regulation and the large potential regulatory code. Overall, DEGs between specific environments can be predicted based on variation in cis-regulatory sequences, although more information needs to be incorporated and better models may be required.

3.
Genetics ; 227(3)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38758968

RESUMO

Characterizing spatial patterns in allele frequencies is fundamental to evolutionary biology because these patterns contain evidence of underlying processes. However, the spatial scales at which gene flow, changing selection, and drift act are often unknown. Many of these processes can operate inconsistently across space, causing nonstationary patterns. We present a wavelet approach to characterize spatial pattern in allele frequency that helps solve these problems. We show how our approach can characterize spatial patterns in relatedness at multiple spatial scales, i.e. a multilocus wavelet genetic dissimilarity. We also develop wavelet tests of spatial differentiation in allele frequency and quantitative trait loci (QTL). With simulation, we illustrate these methods under different scenarios. We also apply our approach to natural populations of Arabidopsis thaliana to characterize population structure and identify locally adapted loci across scales. We find, for example, that Arabidopsis flowering time QTL show significantly elevated genetic differentiation at 300-1,300 km scales. Wavelet transforms of allele frequencies offer a flexible way to reveal geographic patterns and underlying evolutionary processes.


Assuntos
Arabidopsis , Frequência do Gene , Modelos Genéticos , Locos de Características Quantitativas , Arabidopsis/genética , Genética Populacional/métodos , Fluxo Gênico , Seleção Genética
4.
J Biogeogr ; 51(4): 560-574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38596256

RESUMO

AIM: Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range-wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity. LOCATION: Global. TAXON: Arabidopsis thaliana ("Arabidopsis"). METHODS: We fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current, and future climates. We confronted model predictions with individual performance measured on 2,194 herbarium specimens, and we asked whether predicted suitability was associated with life-history and genomic variation measured on ~900 natural accessions. RESULTS: The most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate-associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late-flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the center of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well-predicted by our native-range model applied to certain regions but not others, suggesting it has colonized novel climates. MAIN CONCLUSIONS: Integration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.

5.
Evol Appl ; 17(3): e13673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468714

RESUMO

Mexican native maize (Zea mays ssp. mays) is adapted to a wide range of climatic and edaphic conditions. Here, we focus specifically on the potential role of root anatomical variation in this adaptation. Given the investment required to characterize root anatomy, we present a machine-learning approach using environmental descriptors to project trait variation from a relatively small training panel onto a larger panel of genotyped and georeferenced Mexican maize accessions. The resulting models defined potential biologically relevant clines across a complex environment that we used subsequently for genotype-environment association. We found evidence of systematic variation in maize root anatomy across Mexico, notably a prevalence of trait combinations favoring a reduction in axial hydraulic conductance in varieties sourced from cooler, drier highland areas. We discuss our results in the context of previously described water-banking strategies and present candidate genes that are associated with both root anatomical and environmental variation. Our strategy is a refinement of standard environmental genome-wide association analysis that is applicable whenever a training set of georeferenced phenotypic data is available.

6.
Plant Direct ; 8(3): e575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481436

RESUMO

Poa trivialis (L.) is a cool-season grass species found in various environments worldwide. In addition to being a desired turfgrass species, it is a common weed of agricultural systems and natural areas. As a weed, it is an important contaminant of commercial cool-season grass seed lots, resulting in widespread gene flow facilitated by human activities and causing significant economic losses to farmers. To better understand and manage infestations, we assembled and annotated a haploid genome of P. trivialis and studied troublesome field populations from Oregon, the largest cool-season grass seed producing region in the United States. The genome assembly resulted in 1.35 Gb of DNA sequence distributed among seven chromosome-scale scaffolds, revealing a high content of transposable elements, conserved synteny with Poa annua, and a close relationship with other C3 grasses. A reduced-representation sequencing analysis of field populations revealed limited genetic diversity and suggested potential gene flow and human-assisted dispersal in the region. The genetic resources and insights into P. trivialis provided by this study will improve weed management strategies and enable the development of molecular detection tests for contaminated seed lots to limit seed-mediated gene flow. These resources should also be beneficial for turfgrass breeders seeking to improve desirable traits of commercial P. trivialis varieties and help to guide breeding efforts in other crops to enhance the resiliency of agricultural ecosystems under climate change. Significance Statement: The chromosome-scale assembly of Poa trivialis and population genomic analyses provide crucial insights into the gene flow of weedy populations in agricultural systems and contribute a valuable genomic resource for the plant science community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA