Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Neurooncol Pract ; 11(2): 142-149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38496910

RESUMO

Background: One targeted treatment option for isocitrate dehydrogenase (IDH)-wild-type glioblastoma focuses on tumors with fibroblast growth factor receptor 3::transforming acidic coiled-coil-containing protein 3 (FGFR3::TACC3) fusions. FGFR3::TACC3 fusion detection can be challenging, as targeted RNA next-generation sequencing (NGS) is not routinely performed, and immunohistochemistry is an imperfect surrogate marker. Fusion status can be determined using reverse transcription polymerase chain reaction (RT-PCR) on fresh frozen (FF) material, but sometimes only formalin-fixed, paraffin-embedded (FFPE) tissue is available. Aim: To develop an RT-PCR assay to determine FGFR3::TACC3 status in FFPE glioblastoma samples. Methods: Twelve tissue microarrays with 353 historical glioblastoma samples were immunohistochemically stained for FGFR3. Samples with overexpression of FGFR3 (n = 13) were subjected to FGFR3::TACC3 RT-PCR on FFPE, using 5 primer sets for the detection of 5 common fusion variants. Fusion-negative samples were additionally analyzed with NGS (n = 6), FGFR3 Fluorescence In Situ Hybridization (n = 6), and RNA sequencing (n = 5). Results: Using RT-PCR on FFPE material of the 13 samples with FGFR3 overexpression, we detected an FGFR3::TACC3 fusion in 7 samples, covering 3 different fusion variants. For 5 of these FF was available, and the presence of the fusion was confirmed through RT-PCR on FF. With RNA sequencing, 1 additional sample was found to harbor an FGFR3::TACC3 fusion (variant not covered by current RT-PCR for FFPE). The frequency of FGFR3::TACC3 fusion in this cohort was 9/353 (2.5%). Conclusions: RT-PCR for FGFR3::TACC3 fusions can successfully be performed on FFPE material, with a specificity of 100% and (due to limited primer sets) a sensitivity of 83.3%. This assay allows for the identification of potential targeted treatment options when only formalin-fixed tissue is available.

2.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38215747

RESUMO

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteogenômica , Animais , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogênicas B-raf , Proteômica , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Modelos Animais de Doenças , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Res ; 84(5): 741-756, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38117484

RESUMO

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Neoplasias Encefálicas/patologia , Epigênese Genética , Epigenômica , Glioma/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Microambiente Tumoral
4.
Nat Cancer ; 4(2): 181-202, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732634

RESUMO

Despite producing a panoply of potential cancer-specific targets, the proteogenomic characterization of human tumors has yet to demonstrate value for precision cancer medicine. Integrative multi-omics using a machine-learning network identified master kinases responsible for effecting phenotypic hallmarks of functional glioblastoma subtypes. In subtype-matched patient-derived models, we validated PKCδ and DNA-PK as master kinases of glycolytic/plurimetabolic and proliferative/progenitor subtypes, respectively, and qualified the kinases as potent and actionable glioblastoma subtype-specific therapeutic targets. Glioblastoma subtypes were associated with clinical and radiomics features, orthogonally validated by proteomics, phospho-proteomics, metabolomics, lipidomics and acetylomics analyses, and recapitulated in pediatric glioma, breast and lung squamous cell carcinoma, including subtype specificity of PKCδ and DNA-PK activity. We developed a probabilistic classification tool that performs optimally with RNA from frozen and paraffin-embedded tissues, which can be used to evaluate the association of therapeutic response with glioblastoma subtypes and to inform patient selection in prospective clinical trials.


Assuntos
Proteína Quinase Ativada por DNA , Glioblastoma , Proteína Quinase C-delta , Humanos , Proteína Quinase Ativada por DNA/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Multiômica , Proteína Quinase C-delta/genética , Proteômica
5.
Cancer Discov ; 13(3): 702-723, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445254

RESUMO

LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE: EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Neurilemoma , Fatores de Transcrição , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Receptores ErbB/genética , Mutação , Neurilemoma/genética , Neurilemoma/metabolismo , Neurilemoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinas/genética
6.
Elife ; 112022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969037

RESUMO

Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait. This approach has been crucial towards understanding the basis of pathological and/or advantageous traits associated with Mertk KO mice. Mertk KO mice suffer from severe, early-onset retinal degeneration. MERTK, expressed in retinal pigment epithelia, is a receptor tyrosine kinase with a critical role in phagocytosis of apoptotic cells or cellular debris. Therefore, early-onset, severe retinal degeneration was described to be a direct consequence of failed MERTK-mediated phagocytosis of photoreceptor outer segments by retinal pigment epithelia. Here, we report that the loss of Mertk alone is not sufficient for retinal degeneration. The widely used Mertk KO mouse carries multiple coincidental changes in its genome that affect the expression of a number of genes, including the Mertk paralog Tyro3. Retinal degeneration manifests only when the function of Tyro3 is concomitantly lost. Furthermore, Mertk KO mice display improved anti-tumor immunity. MERTK is expressed in macrophages. Therefore, enhanced anti-tumor immunity was inferred to result from the failure of macrophages to dispose of cancer cell corpses, resulting in a pro-inflammatory tumor microenvironment. The resistance against two syngeneic mouse tumor models observed in Mertk KO mice is not, however, phenocopied by the loss of Mertk alone. Neither Tyro3 nor macrophage phagocytosis by alternate genetic redundancy accounts for the absence of anti-tumor immunity. Collectively, our results indicate that context-dependent epistasis of independent modifier alleles determines Mertk KO traits.


Assuntos
Degeneração Retiniana , Alelos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Fagocitose/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Pigmentos da Retina , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
7.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35914528

RESUMO

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Astrócitos/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Invasividade Neoplásica , Neurônios/fisiologia
8.
Nat Commun ; 13(1): 2089, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440621

RESUMO

Tissue-specific transcriptional activity is silenced in mitotic cells but it remains unclear whether the mitotic regulatory machinery interacts with tissue-specific transcriptional programs. We show that such cross-talk involves the controlled interaction between core subunits of the anaphase-promoting complex (APC) and the ID2 substrate. The N-terminus of ID2 is independently and structurally compatible with a pocket composed of core APC/C subunits that may optimally orient ID2 onto the APCCDH1 complex. Phosphorylation of serine-5 by CDK1 prevented the association of ID2 with core APC, impaired ubiquitylation and stabilized ID2 protein at the mitosis-G1 transition leading to inhibition of basic Helix-Loop-Helix (bHLH)-mediated transcription. The serine-5 phospho-mimetic mutant of ID2 that inefficiently bound core APC remained stable during mitosis, delayed exit from mitosis and reloading of bHLH transcription factors on chromatin. It also locked cells into a "mitotic stem cell" transcriptional state resembling the pluripotent program of embryonic stem cells. The substrates of APCCDH1 SKP2 and Cyclin B1 share with ID2 the phosphorylation-dependent, D-box-independent interaction with core APC. These results reveal a new layer of control of the mechanism by which substrates are recognized by APC.


Assuntos
Anáfase , Proteínas de Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Serina
9.
Dev Cell ; 56(20): 2785-2786, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699786

RESUMO

Pediatric low-grade gliomas (pLGGs) arise primarily at early stages of development. The molecular mechanisms of pLGG gliomagenesis are unclear, as is the progenitor cell of origin. In this issue of Developmental Cell, Jecrois et al. show that NF1-associated optic pathway gliomas originate from migrating glial progenitors that have distinct MEK/ERK dependency.


Assuntos
Glioma , Neurofibromatose 1 , Criança , Humanos , Neuroglia
10.
NPJ Breast Cancer ; 7(1): 58, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031428

RESUMO

ID proteins are helix-loop-helix (HLH) transcriptional regulators frequently overexpressed in cancer. ID proteins inhibit basic-HLH transcription factors often blocking differentiation and sustaining proliferation. A small-molecule, AGX51, targets ID proteins for degradation and impairs ocular neovascularization in mouse models. Here we show that AGX51 treatment of cancer cell lines impairs cell growth and viability that results from an increase in reactive oxygen species (ROS) production upon ID degradation. In mouse models, AGX51 treatment suppresses breast cancer colonization in the lung, regresses the growth of paclitaxel-resistant breast tumors when combined with paclitaxel and reduces tumor burden in sporadic colorectal neoplasia. Furthermore, in cells and mice, we fail to observe acquired resistance to AGX51 likely the result of the inability to mutate the binding pocket without loss of ID function and efficient degradation of the ID proteins. Thus, AGX51 is a first-in-class compound that antagonizes ID proteins, shows strong anti-tumor effects and may be further developed for the management of multiple cancers.

11.
Genome Med ; 13(1): 88, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011400

RESUMO

BACKGROUND: Macrophages are the most common infiltrating immune cells in gliomas and play a wide variety of pro-tumor and anti-tumor roles. However, the different subpopulations of macrophages and their effects on the tumor microenvironment remain poorly understood. METHODS: We combined new and previously published single-cell RNA-seq data from 98,015 single cells from a total of 66 gliomas to profile 19,331 individual macrophages. RESULTS: Unsupervised clustering revealed a pro-tumor subpopulation of bone marrow-derived macrophages characterized by the scavenger receptor MARCO, which is almost exclusively found in IDH1-wild-type glioblastomas. Previous studies have implicated MARCO as an unfavorable marker in melanoma and non-small cell lung cancer; here, we find that bulk MARCO expression is associated with worse prognosis and mesenchymal subtype. Furthermore, MARCO expression is significantly altered over the course of treatment with anti-PD1 checkpoint inhibitors in a response-dependent manner, which we validate with immunofluorescence imaging. CONCLUSIONS: These findings illustrate a novel macrophage subpopulation that drives tumor progression in glioblastomas and suggest potential therapeutic targets to prevent their recruitment.


Assuntos
Biomarcadores Tumorais , Glioblastoma/diagnóstico , Glioblastoma/etiologia , Receptores Imunológicos/genética , Análise de Célula Única , Macrófagos Associados a Tumor/metabolismo , Comunicação Celular/genética , Imunofluorescência , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Isocitrato Desidrogenase/genética , Mutação , Prognóstico , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/patologia
12.
Br J Cancer ; 125(1): 4-6, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33767415

RESUMO

Classification of cancer should lead to informative patients' stratification and selective therapeutic vulnerabilities. A pathway-based classification of glioblastoma uncovered a mitochondrial subtype with a unique sensitivity to inhibitors of oxidative phosphorylation. Precision targeting of cancer metabolism could provide therapeutic opportunities to a lethal neoplasm and be translated to other tumour types.


Assuntos
Neoplasias Encefálicas/classificação , Glioblastoma/classificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Nat Cancer ; 2(2): 141-156, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681822

RESUMO

The transcriptomic classification of glioblastoma (GBM) has failed to predict survival and therapeutic vulnerabilities. A computational approach for unbiased identification of core biological traits of single cells and bulk tumors uncovered four tumor cell states and GBM subtypes distributed along neurodevelopmental and metabolic axes, classified as proliferative/progenitor, neuronal, mitochondrial and glycolytic/plurimetabolic. Each subtype was enriched with biologically coherent multiomic features. Mitochondrial GBM was associated with the most favorable clinical outcome. It relied exclusively on oxidative phosphorylation for energy production, whereas the glycolytic/plurimetabolic subtype was sustained by aerobic glycolysis and amino acid and lipid metabolism. Deletion of the glucose-proton symporter SLC45A1 was the truncal alteration most significantly associated with mitochondrial GBM, and the reintroduction of SLC45A1 in mitochondrial glioma cells induced acidification and loss of fitness. Mitochondrial, but not glycolytic/plurimetabolic, GBM exhibited marked vulnerability to inhibitors of oxidative phosphorylation. The pathway-based classification of GBM informs survival and enables precision targeting of cancer metabolism.


Assuntos
Glioblastoma , Glioma , Glioblastoma/genética , Glioma/metabolismo , Glicólise/genética , Humanos , Mitocôndrias/genética , Fosforilação Oxidativa
14.
Sci Rep ; 10(1): 19482, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173156

RESUMO

Live cell imaging allows direct observation and monitoring of phenotypes that are difficult to infer from transcriptomics. However, existing methods for linking microscopy and single-cell RNA-seq (scRNA-seq) have limited scalability. Here, we describe an upgraded version of Single Cell Optical Phenotyping and Expression (SCOPE-seq2) for combining single-cell imaging and expression profiling, with substantial improvements in throughput, molecular capture efficiency, linking accuracy, and compatibility with standard microscopy instrumentation. We introduce improved optically decodable mRNA capture beads and implement a more scalable and simplified optical decoding process. We demonstrate the utility of SCOPE-seq2 for fluorescence, morphological, and expression profiling of individual primary cells from a human glioblastoma (GBM) surgical sample, revealing relationships between simple imaging features and cellular identity, particularly among malignantly transformed tumor cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imagem Óptica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Células 3T3 , Animais , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Microscopia de Fluorescência , Células Tumorais Cultivadas
15.
Gigascience ; 9(10)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33155039

RESUMO

BACKGROUND: Single-cell RNA sequencing is the reference technique for characterizing the heterogeneity of the tumor microenvironment. The composition of the various cell types making up the microenvironment can significantly affect the way in which the immune system activates cancer rejection mechanisms. Understanding the cross-talk signals between immune cells and cancer cells is of fundamental importance for the identification of immuno-oncology therapeutic targets. RESULTS: We present a novel method, single-cell Tumor-Host Interaction tool (scTHI), to identify significantly activated ligand-receptor interactions across clusters of cells from single-cell RNA sequencing data. We apply our approach to uncover the ligand-receptor interactions in glioma using 6 publicly available human glioma datasets encompassing 57,060 gene expression profiles from 71 patients. By leveraging this large-scale collection we show that unexpected cross-talk partners are highly conserved across different datasets in the majority of the tumor samples. This suggests that shared cross-talk mechanisms exist in glioma. CONCLUSIONS: Our results provide a complete map of the active tumor-host interaction pairs in glioma that can be therapeutically exploited to reduce the immunosuppressive action of the microenvironment in brain tumor.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Comunicação Celular , Glioma/genética , Humanos , Análise de Sequência de RNA , Microambiente Tumoral
16.
Mol Cell ; 79(3): 376-389.e8, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640193

RESUMO

Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isoenzimas/genética , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Xenoenxertos , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mutação , Neuroglia/metabolismo , Neuroglia/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Quinases Dyrk
17.
Neuro Oncol ; 22(11): 1614-1624, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32413119

RESUMO

BACKGROUND: Actionable fibroblast growth factor receptor 3 (FGFR3)-transforming acidic coiled-coil protein 3 fusions (F3T3) are found in approximately 3% of gliomas, but their characteristics and prognostic significance are still poorly defined. Our goal was to characterize the clinical, radiological, and molecular profile of F3T3 positive diffuse gliomas. METHODS: We screened F3T3 fusion by real-time (RT)-PCR and FGFR3 immunohistochemistry in a large series of gliomas, characterized for main genetic alterations, histology, and clinical evolution. We performed a radiological and radiomic case control study, using an exploratory and a validation cohort. RESULTS: We screened 1162 diffuse gliomas (951 unselected cases and 211 preselected for FGFR3 protein immunopositivity), identifying 80 F3T3 positive gliomas. F3T3 was mutually exclusive with IDH mutation (P < 0.001) and EGFR amplification (P = 0.01), defining a distinct molecular cluster associated with CDK4 (P = 0.04) and MDM2 amplification (P = 0.03). F3T3 fusion was associated with longer survival for the whole series and for glioblastomas (median overall survival was 31.1 vs 19.9 mo, P = 0.02) and was an independent predictor of better outcome on multivariate analysis.F3T3 positive gliomas had specific MRI features, affecting preferentially insula and temporal lobe, and with poorly defined tumor margins. F3T3 fusion was correctly predicted by radiomics analysis on both the exploratory (area under the curve [AUC] = 0.87) and the validation MRI (AUC = 0.75) cohort. Using Cox proportional hazards models, radiomics predicted survival with a high C-index (0.75, SD 0.04), while the model combining clinical, genetic, and radiomic data showed the highest C-index (0.81, SD 0.04). CONCLUSION: F3T3 positive gliomas have distinct molecular and radiological features, and better outcome.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Associadas aos Microtúbulos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Feminino , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Cell Rep ; 29(1): 62-75.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577956

RESUMO

Id helix-loop-helix (HLH) proteins (Id1-4) bind E protein bHLH transcription factors, preventing them from forming active transcription complexes that drive changes in cell states. Id proteins are primarily expressed during development to inhibit differentiation, but they become re-expressed in adult tissues in diseases of the vasculature and cancer. We show that the genetic loss of Id1/Id3 reduces ocular neovascularization in mouse models of wet age-related macular degeneration (AMD) and retinopathy of prematurity (ROP). An in silico screen identifies AGX51, a small-molecule Id antagonist. AGX51 inhibits the Id1-E47 interaction, leading to ubiquitin-mediated degradation of Ids, cell growth arrest, and reduced viability. AGX51 is well-tolerated in mice and phenocopies the genetic loss of Id expression in AMD and ROP models by inhibiting retinal neovascularization. Thus, AGX51 is a first-in-class compound that antagonizes an interaction formerly considered undruggable and that may have utility in the management of multiple diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neovascularização Patológica/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HCT116 , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Patológica/metabolismo
19.
Commun Biol ; 2: 135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044160

RESUMO

Glioblastoma (GBM) is resistant to multimodality therapeutic approaches. A high burden of tumor-specific mutant peptides (neoantigens) correlates with better survival and response to immunotherapies in selected solid tumors but how neoantigens impact clinical outcome in GBM remains unclear. Here, we exploit the similarity between tumor neoantigens and infectious disease-derived immune epitopes and apply a neoantigen fitness model for identifying high-quality neoantigens in a human pan-glioma dataset. We find that the neoantigen quality fitness model stratifies GBM patients with more favorable clinical outcome and, together with CD8+ T lymphocytes tumor infiltration, identifies a GBM subgroup with the longest survival, which displays distinct genomic and transcriptomic features. Conversely, neither tumor neoantigen burden from a quantitative model nor the isolated enrichment of CD8+ T lymphocytes were able to predict survival of GBM patients. This approach may guide optimal stratification of GBM patients for maximum response to immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Linfócitos do Interstício Tumoral/imunologia , Sequência de Aminoácidos , Antígenos de Neoplasias/genética , Neoplasias Encefálicas/mortalidade , Estudos de Coortes , Epitopos/genética , Epitopos/imunologia , Ontologia Genética , Glioblastoma/mortalidade , Antígenos HLA/imunologia , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Modelos Imunológicos , Oligopeptídeos/imunologia , Prognóstico , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia
20.
Mol Syst Biol ; 15(2): e8557, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796088

RESUMO

Common approaches to gene signature discovery in single-cell RNA-sequencing (scRNA-seq) depend upon predefined structures like clusters or pseudo-temporal order, require prior normalization, or do not account for the sparsity of single-cell data. We present single-cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan et al, 2015, Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 326) for de novo discovery of both continuous and discrete expression patterns from scRNA-seq. scHPF does not require prior normalization and captures statistical properties of single-cell data better than other methods in benchmark datasets. Applied to scRNA-seq of the core and margin of a high-grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma-infiltrated margins and associated with inferior survival in glioblastoma.


Assuntos
Glioma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única , Transcriptoma/genética , Teorema de Bayes , Regulação Neoplásica da Expressão Gênica/genética , Glioma/patologia , Humanos , Distribuição de Poisson
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA