Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Saudi J Biol Sci ; 29(2): 751-757, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197741

RESUMO

With the progressive focus on renewable energy via biofuels production from lignocellulosic biomass, cellulases are the key enzymes that play a fundamental role in this regard. This study aims to unravel the characteristics of Thermotoga maritima MSB8 (Tma) (a hyperthermophile from hot springs) thermostable glycoside hydrolase enzyme. Here, a glycoside hydrolase gene of Thermotoga maritima (Tma) was heterologously expressed and characterized. The gene was placed in the pQE-30 expression vector under the T5 promotor, and the construct pQE-30-Gh was then successfully integrated into Escherichia coli BL21 (DH5α) genome by transformation. Sequence of the glycoside hydrolase contained an open reading frame of 2.124 kbp, encoded a polypeptide of 721 amino acid residues. The molecular weight of the recombinant protein estimated was 79 kDa. The glycoside hydrolase was purified by Ni+2-NTA affinity chromatography and its enzymatic activity was investigated. The recombinant enzyme is highly stable within an extreme pH range (2.0-7.0) and highly thermostable at 80 °C for 72 h indicating its viability in hyperthermic environment and acidic nature. Moreover, the Ca2+ and Mn2+ introduction stimulated the residual activity of recombinant enzyme. Conclusively, the thermostable glycoside hydrolase possesses potential to be exploited for industrial applications at hyperthermic environment.

2.
Trop Anim Health Prod ; 53(2): 252, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33829333

RESUMO

The aim of present study was to determine the effects of supplementation of either synbiotic or probiotic on growth performance and carcass characteristics, gut health, cecal microbiota prolife and apparent ileal digestibility of protein, amino acids, and energy in broilers. Two hundred and forty-day-old straight-run broilers (Ross 308) were allotted randomly to 1 of 5 dietary treatments including basal diet (control), supplemented with either synbiotic (Nutromax P) or probiotic (Actera), each at 0.5 and 1 g/kg of the diet for 5 weeks. The overall findings of the study indicated better (p < 0.05) growth performance of broilers by synbiotic supplementation (1 g/kg) compared with those fed probiotic (1 g/kg) supplemented and control diets. The broilers consuming diet supplemented with 1 g/kg synbiotic has an increased carcass yield in comparison with those fed control diet. The findings of gut health indicated significantly increased villus height and goblet cells, by synbiotic supplementation (1 g/kg), compared with control diet in broilers. The broilers fed 1 g/kg synbiotic supplemented diets had 18% increased protein, 9 to 31% higher amino acid, and 34% better energy digestibility, whereas 8.4% decreased protein digestibility in broilers fed probiotic (1 g/kg) supplemented compared with control diet in broilers. The broilers fed synbiotic (1 g/kg) supplemented diets had increased cecal Lactobacillus and decreased Salmonella, E. coli, and Clostridium count compared with those fed control diet. In conclusion, synbiotic supplementation (1 g/kg) resulted in improved production performance, balanced cecal microbial composition, and better digestibility of nutrients in broilers compared with those fed control and diets supplemented with probiotics.


Assuntos
Aminoácidos/metabolismo , Ceco/microbiologia , Galinhas , Dieta/veterinária , Digestão , Metabolismo Energético , Íleo/fisiologia , Fermento Seco , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Galinhas/fisiologia , Suplementos Nutricionais/análise , Escherichia coli , Microbioma Gastrointestinal , Proteínas/metabolismo , Saccharomyces cerevisiae
3.
Chem Cent J ; 11(1): 97, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29086883

RESUMO

BACKGROUND: The plant biomass and agro-industrial wastes show great potential for their use as attractive low cost substrates in biotechnological processes. Wheat straw and corn cob as hemicellulosic substrates were acid hydrolyzed and enzymatically saccharified for high xylose production. The hydrolysate was concentrated and fermented by using Saccharomyces cerevisiae and Kluyveromyces for production of xylitol. RESULTS: Acid hydrolysis of wheat straw and corn cob in combination with enzymatic hydrolysis showed great potential for production of free sugars from these substrates. Kluyveromyces produced maximum xylitol from acid treated wheat straw residues with enzymatic saccharification. The percentage xylitol yield was 89.807 g/L and volumetric productivity of 0.019 g/L/h. Kluyveromyces also produced maximum xylitol from corn cob acid hydrolyzed liquor with xylitol yield 87.716 g/L and volumetric productivity 0.018 g/L/h. CONCLUSION: Plant and agro-industrial biomass can be used as a carbohydrate source for the production of xylitol and ethanol after microbial fermentation. This study revealed that wheat straw acid and enzyme hydrolyzed residue proved to be best raw material for production of xylitol with S. cerevisiae. The xylitol produced can be utilized in pharmaceuticals after purification on industrial scale as pharmaceutical purposes.

4.
Protein Pept Lett ; 22(1): 39-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25182053

RESUMO

The genome sequence analysis of Bacillus thuringiensis serovar konkukian S4 has shown to contain two chitinases (Chi74, Chi39) and two chitin-binding proteins (CBP50 and CBP24). The Chi74, Chi39 and CBP50 have been characterized previously. The chitin-binding protein CBP24 was cloned and heterologously expressed in Escherichia coli. The recombinant protein was purified using a Ni-NTA purification system. The purified protein was used to study its substrate binding activity using crystalline chitin variants as substrates. The Bmax and Kd values have shown that it preferably binds to ß-type of the crystalline chitin at a range of pH with peak activity between 5.5-7.5. To elucidate the role of CBP24 in the chitin degradation system of S4, the purified chitinases Chi74, Chi39 along with the ChiA from Serratia proteamcualans were used in different combinations with the CBP24 and chitinolytic activity was assayed. It was shown that the CBP24 acts synergistically with chitin degradation activity of bacterial chitinases non-specifically. Moreover, the CBP24 has shown antifungal activity against plant pathogenic fungi Fusarium oxysporum and Rhizoctonia solani. The present study will lead us to develop a technology for environmental friendly conversion of chitin to valuable products.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Transporte/genética , Quitina/química , Quitinases/metabolismo , Proteínas Recombinantes/biossíntese , Antifúngicos/metabolismo , Bacillus thuringiensis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quitina/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hidrólise , Proteínas Recombinantes/genética , Especificidade por Substrato
5.
Protein Pept Lett ; 21(12): 1282-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24939659

RESUMO

Enzymes from thermophilic organisms are believed to be strong candidates for industrial applications due to their ability to withstand temperature-induced enzyme inactivation. The present study demonstrated molecular cloning, over-expression, purification and characterization of ß-glucosidase from Thermotoga maritima. The bglA gene with a capacity to encode a 51 kDa enzyme was heterologously expressed in E. coli M15. The enzyme was produced @130 mgL(-1) in LB media and @440 mgL(-1) in Dubos salt medium accounting 40-47 % of total cellular soluble proteins when lactose was used as an inducer. The enzyme showed a peak activity between pH and temperature range of 5.0-7.0 and 80-100 °C, respectively. The activity was fairly stable up to 140 °C. The turnover rate (kcat) of the enzyme was 187.1±20 s(-1), whereas the Km and Vmax values were 0.56 mM and 238±2.4 IU mg(-1) protein, respectively. The enzyme was shown to have half-life of 136, 71 and 12.6 h at 80, 90 and 100 °C, respectively. Thermodynamics parameters including melting temperature (130 °C), activation energy for inactivation (36.92 kJmole(-1)), enthalpy (33.73 kJmole(-1)), Gibb's free energy (127.96 kJmole(-1)) and entropy (-246.46 Jmole(-1)K(-1)) have shown that the enzyme have enhanced hydrophobic interactions to prevent its thermal unfolding. These features endorse the industrial applications of the enzyme.


Assuntos
Proteínas de Bactérias/química , Thermotoga maritima/enzimologia , beta-Glucosidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Thermotoga maritima/genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
6.
Mol Biol Rep ; 38(5): 3227-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20213504

RESUMO

We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml(-1) while that of recombinant without intron (xyn669) was 1.26 U ml(-1) after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5-8.5. This revealed that gene was successfully processed in P. pastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.


Assuntos
Chaetomium/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/metabolismo , Xilano Endo-1,3-beta-Xilosidase/genética , Xilano Endo-1,3-beta-Xilosidase/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Estabilidade Enzimática , Dados de Sequência Molecular , Pichia/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
7.
Protein Pept Lett ; 16(4): 356-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19356131

RESUMO

The xylanase (Xyn11A) gene (883 bp) was amplified using C. thermophilum DNA as template and cloned into pET-32a (+) and expressed in E. coli BL21 under T(7) promoter. The recombinant xylanase on SDS-PAGE had a molecular mass of 30 kDa. Productivity profiles of xylanase in E. coli recombinant are more than 4-fold of that produced from T. reesei RUTC-30, 5-fold of that produced by the donor and significantly higher than the values reported on other E. coli, and Saccharomyces cerevisiae recombinants. Temperature stability, pH stability, and other kinetic parameters confirmed that the gene product was thermo-stable in alkaline buffer favoring its suitability to bio-bleaching of kraft pulp.


Assuntos
Chaetomium/enzimologia , Endo-1,4-beta-Xilanases/biossíntese , Chaetomium/genética , Clonagem Molecular , Endo-1,4-beta-Xilanases/metabolismo , Enteropeptidase/metabolismo , Estabilidade Enzimática , Escherichia coli/enzimologia , Temperatura Alta , Cinética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Termodinâmica
8.
Braz. j. microbiol ; 39(4): 724-733, Dec. 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-504313

RESUMO

A 2-deoxyglucose-resistant mutant (M7) of Humicola lanuginosa was obtained by exposing conidia to γ-rays and permitting expression in broth containing 0.6 percent 2-deoxyglucose (DG) and cellobiose (1 percent) before plating on DG esculin-ferric ammonium citrate agar medium from which colonies showing faster and bigger blackening zones were selected. Kinetic parameters for enhanced ß-glucosidase (BGL) synthesis by M7 were achieved when corncobs acted as the carbon source. The combination between corncobs and corn steep liquor was the best to support higher values of all product formation kinetic parameters. Effect of temperature on the kinetic and thermodynamic attributes of BGL production equilibrium in the wild organismand M7was studied using batch process at eight different temperatures in shake-flask studies. The best performance was found at 45ºC and 20 g L-1 corncobs in 64 h. Both growth and product formation (17.93 U mL-1) were remarkably high at 45ºC and both were coupled under optimum working conditions. Product yield of BGL from the mutant M7 (1556.5 U g-1 dry corncobs) was significantly higher than the values reported on all fungal and bacterial systems. Mutation had thermo-stabilization influence on the organism and mutant required lower activation energy for growth and lower magnitudes of enthalpy and entropy for product formation than those demanded by the wild organism, other mesophilic and thermo-tolerant organisms. In the inactivation phase, the organisms needed lower values of activation energy, enthalpy and entropy for product formation equilibrium, confirming thermophilic nature of metabolic network possessed by the mutant organism.


Um mutante de Hemicola lanuginosa resistente a 2-deoxiglucose(M7) foi obtido através de exposição de conídios a raios γ, permitindo a expressão em caldo contendo 0,6 por cento de 2-deoxiglucose (DG) e celobiose (1 por cento) antes da semeadura em ágar DG esculina citrato de ferro amoniacal, da qual foram selecionadas as colônias com halo negro. Os parâmetros cinéticos para produção aumentada de ß-glucosidase (BGL) foram obtidos empregando-se sabugo de milho como fonte de carbono. A combinação de espiga de milho com água de maceração de milho foi a que forneceu os valores mais altos nos parâmetros cinéticos de formação de todos os produtos. O efeito da temperatura na cinética e atributos termodinâmicos da produção de BGL pelas cepas selvagem e M7 foi avaliado empregando-se processo de batelada em oito temperaturas diferentes in frascos em agitação. O melhor desempenho foi observado a 45ºC e 20g.l-1 de espiga de milho em 64h. Tanto a multiplicação quanto a formação do produto foram muito altas a 45ºC e ambas estavam ligadas em condições ótimas de trabalho. O rendimento de BGL produzido pelo mutante M7 (1556 U.g-1 de espiga seca) foi significativamente superior aos valores reportados para todos os sistemas fúngicos e bacterianos. A mutação influenciou a termoestabilização no microrganismo, sendo que o mutante necessitou de energia de ativação mais baixa para multiplicação e valores mais baixos de entalpia e entropia para a formação do produto quando comparado à cepa selvagem e a outros microrganismos mesofilicos e termotolerantes. Na fase de inativação, os microrganismos necessitaram valores mais baixos de energia de ativação, entalpia e entropia para o equilíbrio da formação de produto, confirmando a natureza termofílica da máquina metabólica do mutante.


Assuntos
Ágar , Entropia , Estruturas Vegetais/enzimologia , Fermentação , Glucosidases/análise , Glucosidases/isolamento & purificação , Mutação , Efeitos da Radiação , Amostras de Alimentos , Cinética , Métodos , Sambucus , Métodos , Zea mays
9.
Braz J Microbiol ; 39(4): 724-33, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031297

RESUMO

A 2-deoxyglucose-resistant mutant (M7) of Humicola lanuginosa was obtained by exposing conidia to γ-rays and permitting expression in broth containing 0.6% 2-deoxyglucose (DG) and cellobiose (1%) before plating on DG esculin-ferric ammonium citrate agar medium from which colonies showing faster and bigger blackening zones were selected. Kinetic parameters for enhanced ß-glucosidase (BGL) synthesis by M7 were achieved when corncobs acted as the carbon source. The combination between corncobs and corn steep liquor was the best to support higher values of all product formation kinetic parameters. Effect of temperature on the kinetic and thermodynamic attributes of BGL production equilibrium in the wild organism and M7 was studied using batch process at eight different temperatures in shake-flask studies. The best performance was found at 45°C and 20 g L(-1) corncobs in 64 h. Both growth and product formation (17.93 U mL(-1)) were remarkably high at 45°C and both were coupled under optimum working conditions. Product yield of BGL from the mutant M7 (1556.5 U g(-1) dry corncobs) was significantly higher than the values reported on all fungal and bacterial systems. Mutation had thermo-stabilization influence on the organism and mutant required lower activation energy for growth and lower magnitudes of enthalpy and entropy for product formation than those demanded by the wild organism, other mesophilic and thermo-tolerant organisms. In the inactivation phase, the organisms needed lower values of activation energy, enthalpy and entropy for product formation equilibrium, confirming thermophilic nature of metabolic network possessed by the mutant organism.

10.
Appl Biochem Biotechnol ; 120(1): 51-70, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15640557

RESUMO

Two isoenzymes of endo-1,4-beta-xylanase (EC 3.2.1.8) from Scopulariopsis sp. were purified by a combination of ammonium sulfate precipitation, hydrophobic interaction, and anion-exchange and gel filtration chromatography. The native mol wts of the least acidic xylanase (LAX) and the highly acidic xylanase (HAX) were 25 and 144 kDa and the subunit mol wts were 25 and 36 kDa, respectively. The kcat values of LAX and HAX for oat-spelt xylan at 40 degrees C, pH 6.5, were 95,000 and 9900 min-1 and the Km values of LAX and HAX were 30 and 3.3 mg/mL. The thermodynamic activation parameters of xylan hydrolysis showed that the high activity of LAX when compared with HAX was not owing to a reduction in DeltaH# but was entropically driven. High-performance liquid chromatography analysis of the degradation products showed that LAX formed both xylotrioses and xylobioses, but HAX predominantly formed xylotrioses. The half-lives of LAX and HAX at 50 degrees C in 50 mM 2-N-morpholino ethanesulfonic acid (MES), pH 6.5 buffer were 267 and 69 min, respectively. Thermodynamic analysis showed that at lower temperatures, the increased thermostability of LAX (DeltaH#=306 kJ/mol) compared with HAX (DeltaH#=264 kJ/mol) was owing to more noncovalent surface interactions. At higher temperatures, LAX (DeltaS*=-232 J/[mol.K]) was more thermostable than HAX (DeltaS*=490 J/[mol.K]) owing to a more ordered transition-state conformation. An energy-activity diagram was introduced showing that kcat/Km does not successfully explain the true kinetic behavior of both xylanase isoenzymes. The simultaneously thermostable and highly active LAX could be utilized in biotechnological processes involving xylan hydrolysis.


Assuntos
Ascomicetos/enzimologia , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Ascomicetos/genética , Catálise , Eletroforese em Gel de Poliacrilamida , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Peso Molecular , Temperatura , Termodinâmica , Xilanos/química , Xilanos/metabolismo
11.
Appl Biochem Biotechnol ; 117(2): 75-92, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15159552

RESUMO

The effect of carbon source and its concentration, inoculum size, yeast extract concentration, nitrogen source, pH of the fermentation medium, and fermentation temperature on beta-glucosidase production by Kluyveromyces marxianus in shake-flask culture was investigated. These were the independent variables that directly regulated the specific growth and beta-glucosidase production rate. The highest product yield, specific product yield, and productivity of beta-glucosidase occurred in the medium (pH 5.5) inoculated with 10% (v/v) inoculum of the culture. Cellobiose (20 g/L) significantly improved beta-glucosidase production measured as product yield (YP/S) and volumetric productivity (QP) followed by sucrose, lactose, and xylose. The highest levels of productivity (144 IU/[L.h]) of beta-glucosidase occurred on cellobiose in the presence of CSL at 35 degrees C and are significantly higher than the values reported by other researchers on almost all other organisms. The thermodynamics and kinetics of beta-glucosidase production and its deactivation are also reported. The enzyme was substantially stable at 60 degrees C and may find application in some industrial processes.


Assuntos
Carbono/fisiologia , Kluyveromyces/enzimologia , Nitrogênio/fisiologia , beta-Glucosidase/biossíntese , Animais , Metabolismo dos Carboidratos , Meios de Cultura , Fermentação , Concentração de Íons de Hidrogênio , Temperatura , beta-Glucosidase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA