Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(7): 101627, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38964315

RESUMO

The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.


Assuntos
Fluoruracila , Organoides , Medicina de Precisão , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Humanos , Organoides/efeitos dos fármacos , Organoides/patologia , Organoides/metabolismo , Animais , Medicina de Precisão/métodos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Masculino , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Idoso , Relevância Clínica
2.
Cancer Lett ; 598: 217087, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964732

RESUMO

Human appendix is critical for the maintenance of intestinal homeostasis. Appendicectomy has been the optimal treatment of acute appendicitis, yet the cancer incidence after appendix removal remains unclear. In this territory-wide retrospective cohort study, adult participants who underwent appendicectomy from 2000 to 2018 were retrieved from a population database (n = 43,983), while matched reference participants were retrieved as controls (n = 85,853). After appendicectomy, the overall cancer risk was significantly increased (subdistribution hazard ratio (SHR) = 1.124) compared to the non-appendicectomy group. Appendicectomy-treated males had higher cancer risk than males without appendicectomy (SHR = 1.197), while such difference was not observed in female participants. Significant increase in cancer risk was also observed in elder participants (age >60) with appendicectomy (SHR = 1.390). Appendicectomy was positively correlated with the risk of digestive tract and respiratory cancers including colon (SHR = 1.440), pancreas (SHR = 1.930), and trachea, bronchus, and lung (SHR = 1.394). In contrast, the risk of liver cancer was markedly decreased after appendicectomy (SHR = 0.713). In conclusion, we reported the association of appendicectomy with subsequent cancer incidence. These findings highlight the potential complication after appendix removal and the necessity of post-operative management to monitor and prevent long-term adverse events.

3.
Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900944

RESUMO

The N6-methyladenosine (m6A) RNA binding protein YTHDF1 is frequently overexpressed in colorectal cancer (CRC) and drives chemotherapeutic resistance. To systematically identify druggable targets in CRC with high expression of YTHDF1, we employed a CRISPR/Cas9 screening strategy that revealed RUVBL1 and RUVBL2 as putative targets.RUVBL1/2 were overexpressed in primary CRC samples and represented independent predictors of poor patient prognosis. Functionally, loss of RUVBL1/2 preferentially impaired the growth ofYTHDF1-high CRC cells, patient-derived primary CRC organoids, and subcutaneous xenografts. Mechanistically, YTHFD1 and RUVBL1/2 formed a positive feed-forward circuit to accelerate oncogenic translation. YTHDF1 bound to m6A-modified RUVBL1/2 mRNA to promote translation initiation and protein expression. Co-IP and mass spectrometry identified that RUVBL1/2 reciprocally interacted with YTHDF1 at 40S translation initiation complexes. Consequently, RUVBL1/2 depletion stalled YTHDF1-driven oncogenic translation and nascent protein biosynthesis, leading to proliferative arrest and apoptosis. Ribo-seq revealed that RUVBL1/2 loss impaired the activation of MAPK, RAS and PI3K-AKT signaling induced by YTHDF1. Finally, blockade of RUVBL1/2 by the pharmacological inhibitor CB6644 or vesicle-like nanoparticle-encapsulated siRNAs preferentially arrested the growth of YTHDF1-expressing CRC in vitro and in vivo. Together, this study uncovered that RUVBL1/2 are potential prognostic markers and druggable targets that regulate protein translation in YTHDF1-high CRC.

4.
Gut ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886045

RESUMO

Gastric cancer (GC) is one of the most common malignancies and a prominent cause of cancer mortality worldwide. A distinctive characteristic of GC is its intimate association with commensal microbial community. Although Helicobacter pylori is widely recognised as an inciting factor of the onset of gastric carcinogenesis, increasing evidence has indicated the substantial involvement of microbes that reside in the gastric mucosa during disease progression. In particular, dysregulation in gastric microbiota could play pivotal roles throughout the whole carcinogenic processes, from the development of precancerous lesions to gastric malignancy. Here, current understanding of the gastric microbiota in GC development is summarised. Potential translational and clinical implications of using gastric microbes for GC diagnosis, prognosis and therapeutics are also evaluated, with further discussion on conceptual haziness and limitations at present. Finally, we highlight that modulating microbes is a novel and promising frontier for the prevention and management of GC, which necessitates future in-depth investigations.

5.
Nat Microbiol ; 9(6): 1467-1482, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750176

RESUMO

Bacteria such as the oral microbiome member Peptostreptococcus anaerobius can exacerbate colorectal cancer (CRC) development. Little is known regarding whether these immunomodulatory bacteria also affect antitumour immune checkpoint blockade therapy. Here we show that administration of P. anaerobius abolished the efficacy of anti-PD1 therapy in mouse models of CRC. P. anaerobius both induced intratumoral myeloid-derived suppressor cells (MDSCs) and stimulated their immunosuppressive activities to impair effective T cell responses. Mechanistically, P. anaerobius administration activated integrin α2ß1-NF-κB signalling in CRC cells to induce secretion of CXCL1 and recruit CXCR2+ MDSCs into tumours. The bacterium also directly activated immunosuppressive activity of intratumoral MDSCs by secreting lytC_22, a protein that bound to the Slamf4 receptor on MDSCs and promoted ARG1 and iNOS expression. Finally, therapeutic targeting of either integrin α2ß1 or the Slamf4 receptor were revealed as promising strategies to overcome P. anaerobius-mediated resistance to anti-PD1 therapy in CRC.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , Receptor de Morte Celular Programada 1 , Animais , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Camundongos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Humanos , Linhagem Celular Tumoral , Integrina alfa2beta1/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos , Modelos Animais de Doenças , Feminino , NF-kappa B/metabolismo
6.
Gut ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599786

RESUMO

OBJECTIVE: Probiotic Lactococcus lactis is known to confer health benefits to humans. Here, we aimed to investigate the role of L. lactis in colorectal cancer (CRC). DESIGN: L. lactis abundance was evaluated in patients with CRC (n=489) and healthy individuals (n=536). L. lactis was isolated from healthy human stools with verification by whole genome sequencing. The effect of L. lactis on CRC tumourigenesis was assessed in transgenic Apc Min/+ mice and carcinogen-induced CRC mice. Faecal microbiota was profiled by metagenomic sequencing. Candidate proteins were characterised by nano liquid chromatography-mass spectrometry. Biological function of L. lactis conditioned medium (HkyuLL 10-CM) and functional protein was studied in human CRC cells, patient-derived organoids and xenograft mice. RESULTS: Faecal L. lactis was depleted in patients with CRC. A new L. lactis strain was isolated from human stools and nomenclated as HkyuLL 10. HkyuLL 10 supplementation suppressed CRC tumourigenesis in Apc Min/+ mice, and this tumour-suppressing effect was confirmed in mice with carcinogen-induced CRC. Microbiota profiling revealed probiotic enrichment including Lactobacillus johnsonii in HkyuLL 10-treated mice. HkyuLL 10-CM significantly abrogated the growth of human CRC cells and patient-derived organoids. Such protective effect was attributed to HkyuLL 10-secreted proteins, and we identified that α-mannosidase was the functional protein. The antitumourigenic effect of α-mannosidase was demonstrated in human CRC cells and organoids, and its supplementation significantly reduced tumour growth in xenograft mice. CONCLUSION: HkyuLL 10 suppresses CRC tumourigenesis in mice through restoring gut microbiota and secreting functional protein α-mannosidase. HkyuLL 10 administration may serve as a prophylactic measure against CRC.

7.
Cell Rep Med ; 5(4): 101478, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631285

RESUMO

Immunotherapy has emerged as a robust approach against cancer, yet its efficacy has varied among individuals, accompanied by the occurrence of immune-related adverse events. As a result, the efficacy of immunotherapy is far from satisfactory, and enormous efforts have been invested to develop strategies to improve patient outcomes. The gut microbiome is now well acknowledged for its critical role in immunotherapy, with better understanding on host-microbes interaction in the context of cancer treatment. Also, an increasing number of trials have been conducted to evaluate the potential and feasibility of microbiome-targeting approaches to enhance efficacy of cancer treatment in patients. Here, the role of the gut microbiome and metabolites (e.g., short-chain fatty acids, tryptophan metabolites) in immunotherapy and the underlying mechanisms are explored. The application of microbiome-targeting approaches that aim to improve immunotherapy efficacy (e.g., fecal microbiota transplantation, probiotics, dietary intervention) is also elaborated, with further discussion on current challenges and suggestions for future research.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Imunoterapia , Resultado do Tratamento , Transplante de Microbiota Fecal
8.
Nat Commun ; 15(1): 427, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199995

RESUMO

The microbiome in a specific human organ has been well-studied, but few reports have investigated the multi-organ microbiome as a whole. Here, we aim to analyse the intra-individual inter-organ and intra-organ microbiome in deceased humans. We collected 1608 samples from 53 sites of 7 surface organs (oral cavity, esophagus, stomach, small intestine, appendix, large intestine and skin; n = 33 subjects) and performed microbiome profiling, including 16S full-length sequencing. Microbial diversity varied dramatically among organs, and core microbial species co-existed in different intra-individual organs. We deciphered microbial changes across distinct intra-organ sites, and identified signature microbes, their functional traits, and interactions specific to each site. We revealed significant microbial heterogeneity between paired mucosa-lumen samples of stomach, small intestine, and large intestine. Finally, we established the landscape of inter-organ relationships of microbes along the digestive tract. Therefore, we generate a catalogue of bacterial composition, diversity, interaction, functional traits, and bacterial translocation in human at inter-organ and intra-organ levels.


Assuntos
Apêndice , Microbiota , Humanos , Translocação Bacteriana , Estômago , Microbiota/genética , Boca
9.
EBioMedicine ; 100: 104952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176203

RESUMO

BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ácidos Pentanoicos , Probióticos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Lactobacillus acidophilus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Fígado/metabolismo , Transformação Celular Neoplásica/metabolismo , Carcinogênese/patologia , Dieta Hiperlipídica , Colina/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Camundongos Endogâmicos C57BL
10.
Gut ; 72(12): 2272-2285, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37770127

RESUMO

OBJECTIVE: Gut microbiota is a key player in dictating immunotherapy response. We aimed to explore the immunomodulatory effect of probiotic Lactobacillus gallinarum and its role in improving anti-programmed cell death protein 1 (PD1) efficacy against colorectal cancer (CRC). DESIGN: The effects of L. gallinarum in anti-PD1 response were assessed in syngeneic mouse models and azoxymethane/dextran sulfate sodium-induced CRC model. The change of immune landscape was identified by multicolour flow cytometry and validated by immunohistochemistry staining and in vitro functional assays. Liquid chromatography-mass spectrometry was performed to identify the functional metabolites. RESULTS: L. gallinarum significantly improved anti-PD1 efficacy in two syngeneic mouse models with different microsatellite instability (MSI) statuses (MSI-high for MC38, MSI-low for CT26). Such effect was confirmed in CRC tumourigenesis model. L. gallinarum synergised with anti-PD1 therapy by reducing Foxp3+ CD25+ regulatory T cell (Treg) intratumoural infiltration, and enhancing effector function of CD8+ T cells. L. gallinarum-derived indole-3-carboxylic acid (ICA) was identified as the functional metabolite. Mechanistically, ICA inhibited indoleamine 2,3-dioxygenase (IDO1) expression, therefore suppressing kynurenine (Kyn) production in tumours. ICA also competed with Kyn for binding site on aryl hydrocarbon receptor (AHR) and antagonised Kyn binding on CD4+ T cells, thereby inhibiting Treg differentiation in vitro. ICA phenocopied L. gallinarum effect and significantly improved anti-PD1 efficacy in vivo, which could be reversed by Kyn supplementation. CONCLUSION: L. gallinarum-derived ICA improved anti-PD1 efficacy in CRC through suppressing CD4+Treg differentiation and enhancing CD8+T cell function by modulating the IDO1/Kyn/AHR axis. L. gallinarum is a potential adjuvant to augment anti-PD1 efficacy against CRC.


Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Cinurenina , Lactobacillus , Animais , Camundongos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/tratamento farmacológico , Cinurenina/metabolismo , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Reguladores , Lactobacillus/química , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Lisados Bacterianos/farmacologia , Lisados Bacterianos/uso terapêutico
11.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407433

RESUMO

The gut microbiota plays a crucial role in regulating various host metabolic, immune, and neuroendocrine functions, and has a significant impact on human health. Several lines of evidence suggest that gut dysbiosis is associated with a variety of diseases, including cancer. The gut microbiota can impact the development and progression of cancer through a range of mechanisms, such as regulating cell proliferation and death, modulating the host immune response, and altering the host metabolic state. Gene regulatory programs are considered critical mediators between the gut microbiota and host phenotype, of which RNA N6-methyladenosine (m6A) modifications have attracted much attention recently. Aberrant m6A modifications have been shown to play a crucial role in cancer development. This review aims to provide an overview of the diverse roles of gut microbiota and RNA m6A modifications in cancer and highlight their potential interactions in cancer development.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Proliferação de Células , Neoplasias/genética , RNA
12.
Gut ; 72(11): 2112-2122, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37491158

RESUMO

OBJECTIVE: Roseburia intestinalis is a probiotic species that can suppress intestinal inflammation by producing metabolites. We aimed to study the role of R. intestinalis in colorectal tumourigenesis and immunotherapy. DESIGN: R. intestinalis abundance was evaluated in stools of patients with colorectal cancer (CRC) (n=444) and healthy controls (n=575). The effects of R. intestinalis were studied in ApcMin/+ or azoxymethane (AOM)-induced CRC mouse models, and in syngeneic mouse xenograft models of CT26 (microsatellite instability (MSI)-low) or MC38 (MSI-high). The change of immune landscape was evaluated by multicolour flow cytometry and immunohistochemistry staining. Metabolites were profiled by metabolomic profiling. RESULTS: R. intestinalis was significantly depleted in stools of patients with CRC compared with healthy controls. R. intestinalis administration significantly inhibited tumour formation in ApcMin/+ mice, which was confirmed in mice with AOM-induced CRC. R. intestinalis restored gut barrier function as indicated by improved intestinal permeability and enhanced expression of tight junction proteins. Butyrate was identified as the functional metabolite generated by R. intestinalis. R. intestinalis or butyrate suppressed tumour growth by inducing cytotoxic granzyme B+, interferon (IFN)-γ+ and tumour necrosis factor (TNF)-α+ CD8+ T cells in orthotopic mouse models of MC38 or CT26. R. intestinalis or butyrate also significantly improved antiprogrammed cell death protein 1 (anti-PD-1) efficacy in mice bearing MSI-low CT26 tumours. Mechanistically, butyrate directly bound to toll-like receptor 5 (TLR5) receptor on CD8+ T cells to induce its activity through activating nuclear factor kappa B (NF-κB) signalling. CONCLUSION: R. intestinalis protects against colorectal tumourigenesis by producing butyrate, which could also improve anti-PD-1 efficacy by inducing functional CD8+ T cells. R. intestinalis is a potential adjuvant to augment anti-PD-1 efficacy against CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Humanos , Camundongos , Animais , Butiratos/farmacologia , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Colorretais/metabolismo
13.
Gut Microbes ; 15(1): 2203968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095682

RESUMO

Trillions of microbes are indigenous to the human gastrointestinal tract, together forming an ecological community known as the gut microbiota. The gut microbiota is involved in dietary digestion to produce various metabolites. In healthy condition, microbial metabolites have unneglectable roles in regulating host physiology and intestinal homeostasis. However, increasing studies have reported the correlation between metabolites and the development of colorectal cancer (CRC), with the identification of oncometabolites. Meanwhile, metabolites can also influence the efficacy of cancer treatments. In this review, metabolites derived from microbes-mediated metabolism of dietary carbohydrates, proteins, and cholesterol, are introduced. The roles of pro-tumorigenic (secondary bile acids and polyamines) and anti-tumorigenic (short-chain fatty acids and indole derivatives) metabolites in CRC development are then discussed. The impacts of metabolites on chemotherapy and immunotherapy are further elucidated. Collectively, given the importance of microbial metabolites in CRC, therapeutic approaches that target metabolites may be promising to improve patient outcome.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Carcinogênese , Intestinos
14.
Semin Cancer Biol ; 92: 16-27, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965839

RESUMO

Excess body weight is a global health problem due to sedentary lifestyle and unhealthy diet, affecting 2 billion population worldwide. Obesity is a major risk factor for metabolic diseases. Notably, the metabolic risk of obesity largely depends on body weight distribution, of which visceral adipose tissues but not subcutaneous fats are closely associated with obesity comorbidities, including type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and certain types of cancer. Latest multi-omics and mechanistical studies reported the crucial involvement of genetic and epigenetic alterations, adipokines dysregulation, immunity changes, imbalance of white and brown adipose tissues, and gut microbial dysbiosis in mediating the pathogenic association between visceral adipose tissues and comorbidities. In this review, we explore the epidemiology of excess body weight and the up-to-date mechanism of how excess body weight and obesity lead to chronic complications. We also examine the utilization of visceral fat measurement as an accurate clinical parameter for risk assessment in healthy individuals and clinical outcome prediction in obese subjects. In addition, current approaches for the prevention and treatment of excess body weight and its related metabolic comorbidities are further discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/metabolismo , Comorbidade , Fatores de Risco , Dieta
15.
Genomics Proteomics Bioinformatics ; 21(1): 84-96, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35914737

RESUMO

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers and the leading cause of cancer-associated deaths. Epidemiological studies have shown that both genetic and environmental risk factors contribute to the development of CRC. Several metagenomic studies of CRC have identified gut dysbiosis as a fundamental risk factor in the evolution of colorectal malignancy. Although enormous efforts and substantial progresses have been made in understanding the relationship between human gut microbiome and CRC, the precise mechanisms involved remain elusive. Recent data have shown a direct causative role of the gut microbiome in DNA damage, inflammation, and drug resistance in CRC, suggesting that modulation of gut microbiome could act as a powerful tool in CRC prevention and therapy. Here, we provide an overview of the relationship between gut microbiome and CRC, and explore relevant mechanisms of colorectal tumorigenesis. We next highlight the potential of bacterial species as clinical biomarkers, as well as their roles in therapeutic response. Factors limiting the clinical translation of gut microbiome and strategies for resolving current challenges are further discussed.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/terapia , Biomarcadores , Carcinogênese
17.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884552

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.

18.
Biomedicines ; 10(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885015

RESUMO

Colorectal cancer (CRC) is a malignant disease that is the second most common cancer worldwide. CRC arises from the complex interactions among a variety of genetic and environmental factors. To understand the mechanism of colon tumorigenesis, preclinical studies have developed various mouse models including carcinogen-induced and transgenic mice to recapitulate CRC in humans. Using these mouse models, scientific breakthroughs have been made on the understanding of the pathogenesis of this complex disease. Moreover, the availability of transgenic knock-in or knock-out mice further increases the potential of CRC mouse models. In this review, the overall features of carcinogen-induced (focusing on azoxymethane and azoxymethane/dextran sulfate sodium) and transgenic (focusing on ApcMin/+) mouse models, as well as their mechanisms to induce colon tumorigenesis, are explored. We also discuss limitations of these mouse models and their applications in the evaluation and study of drugs and treatment regimens against CRC. Through these mouse models, a better understanding of colon tumorigenesis can be achieved, thereby facilitating the discovery of novel therapeutic strategies against CRC.

19.
Oncogene ; 41(36): 4200-4210, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882981

RESUMO

Large-scale fecal shotgun metagenomic sequencing revealed the high abundance of Parvimonas micra in colorectal cancer (CRC) patients. We investigated the role and clinical significance of P. micra in colorectal tumorigenesis. The abundance of P. micra was examined in 309 fecal samples and 165 colon biopsy tissues of CRC patients and healthy subjects. P. micra was significantly enriched in fecal samples from 128 CRC patients compared to 181 healthy subjects (P < 0.0001); and in colon tissue biopsies from 52 CRC patients compared to 61 healthy subjects (P < 0.0001). Multivariate analysis showed that P. micra is an independent risk factor of poor survival in CRC patients (Hazard Ratio: 1.93). P. micra strain was isolated from feces of a CRC patient. Apcmin/+ mice gavaged with P. micra showed significantly higher tumor burden and tumor load (both P < 0.01). Consistently, gavage of P. micra significantly promoted colonocyte proliferation in conventional mice, which was further confirmed by germ-free mice. P. micra colonization up-regulated genes involved in cell proliferation, stemness, angiogenesis and invasiveness/metastasis; and enhanced Th17 cells infiltration and expression of Th17 cells-secreted cytokines (Il-17, Il-22, and Il-23) in the colon of Apcmin/+, conventional and germ-free mice. P. micra-conditioned medium significantly promoted the differentiation of CD4+ T cells to Th17 cells (IL-17+CD4+ phenotype) and enhanced the oncogenic Wnt signaling pathway. In conclusion, P. micra promoted colorectal tumorigenesis in mice by inducing colonocyte proliferation and altering Th17 immune response. P. micra may act as a prognostic biomarker for poor survival of CRC patients.


Assuntos
Neoplasias Colorretais , Interleucina-17 , Animais , Carcinogênese/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Firmicutes , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/metabolismo , Camundongos
20.
Gastroenterology ; 163(3): 699-711, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679948

RESUMO

BACKGROUND & AIMS: Lack of viral reference genomes poses a challenge to virome study. We investigated human gut virome and its clinical implication by ultra-deep metagenomic sequencing. METHODS: We extracted sufficient viral DNA from human feces for ultra-deep PacBio sequencing (>10 µg) and Illumina sequencing (>1 µg). Upon de novo assembly and 6 stages of strict filtering, viral genomes were generated and validated in 3 cohorts of 2819 published fecal metagenomes. Diagnostic performance of assembled viruses for colorectal cancer were tested in a training cohort and 2 independent validation cohorts. Virus mapping ratio, evolutionary history, and virus status (lytic or temperate) were also examined. RESULTS: The mean amount of extracted viral DNA increased by 14-fold compared with previous protocols. We obtained PacBio long reads and Illumina short reads with 290-fold higher depth than previous studies. We assembled and validated 1178 contigs as complete viral genomes, of which 1058 were newly identified. Thirteen viral genomes (398-839 kb) that are longer than the largest bacteriophage found in humans (393 kb) were discovered. Phylogenetic tree was constructed based on Hidden Markov Models alignment scores of 4 conserved viral proteins. Incorporating our assembled genomes into the National Center for Biotechnology Information database improved the mapping ratio of published metagenomes ≤18 times. Lytic viruses (75.9% ± 12.2% of total) were predominantly present in our sample. A biomarker panel of 14 novel viruses could discriminate patients with colorectal cancer from controls with an area under the receiver operating characteristics curve of 0.87 in the training cohort, which was validated with areas under the receiver operating characteristics curve of 0.85 and 0.73 in 2 independent cohorts. CONCLUSIONS: We uncovered 1058 novel human gut viruses. These findings can contribute to clinical diagnosis, current viral reference genome, and future virome investigation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Vírus , Neoplasias Colorretais/genética , Vírus de DNA/genética , DNA Viral/genética , Humanos , Metagenoma , Metagenômica/métodos , Filogenia , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA