Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Prod Econ ; 259: 108817, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36852136

RESUMO

The outbreak of COVID-19 has accelerated the building of resilient supply chains, and supply chain digitalization is gradually being recognized as an enabling means to this end. Nevertheless, scholars generally agree that more empirical studies will need to be conducted on how digitalization can facilitate supply chain resilience at various stages and enhance supply chain performance in a highly uncertain environment. To echo the call, this study develops a theoretical influence mechanism of "supply chain digitalization → supply chain resilience → supply chain performance" based on dynamic capability theory. The proposed relationships are validated using survey data collected from 210 Chinese manufacturing companies. The results help identify the paths digitalization and supply chain resilience can take to improve supply chain performance in a turbulent environment. The different roles of three supply chain resilience capabilities, namely absorptive capability (before the disruption), response capability (during the disruption), and recovery capability (after the disruption), which impact on supply chain performance differently, are highlighted. In addition, it is found that digitalization can bring a differential impact on these three supply chain resilience capabilities through different aspects of resource and structural adjustment measures. The findings also confirm the mediating role of absorptive capability, response capability, and recovery capability between digitalization and supply chain performance. During crisis, supply chain digitalization can increase cost-effectiveness, enhance information and communication efficiency, and promote supply chain resilience to achieve better performance. For theoretical contribution, this study enriches the research on supply chain digitalization and resilience by underpinning the relationships between the two with dynamic capability theory. For practical contribution, the research findings provide insights for enterprises to leverage digitalization to strengthen resilience in supply chain.

2.
Transp Res E Logist Transp Rev ; 159: 102598, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35185357

RESUMO

This study proposes a decision support system (DSS) that integrates GIS, analytics, and simulation methods to help develop a priority-based distribution of COVID-19 vaccines in a large urban setting. The methodology applies novel hierarchical heuristic-simulation procedures to create a holistic algorithm for prioritising the process of demand allocation and optimising vaccine distribution. The Melbourne metropolitan area in Australia with a population of over five million is used as a case study. Three vaccine supply scenarios, namely limited, excessive, and disruption, were formulated to operationalise a two-dose vaccination program. Vaccine distribution with hard constraints were simulated and then further validated with sensitivity analyses. The results show that vaccines can be prioritised to society's most vulnerable segments and distributed using the current logistics network with 10 vehicles. Compared with other vaccine distribution plans with no prioritisation, such as equal allocation of vaccines to local government areas based on population size or one on a first-come-first-serve basis, the plans generated by the proposed DSS ensure prioritised vaccination of the most needed and vulnerable population. The aim is to curb the spread of the infection and reduce mortality rate more effectively. They also achieve vaccination of the entire population with less logistical resources required. As such, this study contributes to knowledge and practice in pandemic vaccine distribution and enables governments to make real-time decisions and adjustments in daily distribution plans. In this way any unforeseen disruptions in the vaccine supply chain can be coped with.

3.
J Bus Res ; 136: 316-329, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538979

RESUMO

The COVID-19 pandemic has revealed the fragility of global supply chains arising from raw material scarcity, production and transportation disruption, and social distancing. Firms need to carefully anticipate the difficulties during recovery and formulate appropriate strategies to ensure the survival of their businesses and supply chains. To enhance awareness of the issues, this research aims to identify and model recovery challenges in the context of the Bangladeshi ready-made garment industry. A Delphi-based grey decision-making trial and evaluation laboratory (DEMATEL) methodology was used to analyze the data. While the Delphi method helped identify the major supply chain recovery challenges from the impacts of the COVID-19 pandemic, the grey DEMATEL approach helped categorize the causal relationships among these challenges. Of the 23 recovery challenges finalized, 12 are causal challenges. The study's findings can assist decision-makers in developing strategic policies to overcome the recovery challenges in the post-COVID-19 era.

4.
Int J Disaster Risk Reduct ; 50: 101780, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32904513

RESUMO

Efficient delivery of multiple resources for emergency recovery during disasters is a matter of life and death. Nevertheless, most studies in this field only handle situations involving single resource. This paper formulates the Multi-Resource Scheduling and Routing Problem (MRSRP) for emergency relief and develops a solution framework to effectively deliver expendable and non-expendable resources in Emergency Recovery Operations. Six methods, namely, Greedy, Augmented Greedy, k-Node Crossover, Scheduling. Monte Carlo, and Clustering, are developed and benchmarked against the exact method (for small instances) and the genetic algorithm (for large instances). Results reveal that all six heuristics are valid and generate near or actual optimal solutions for small instances. With respect to large instances, the developed methods can generate near-optimal solutions within an acceptable computational time frame. The Monte Carlo algorithm, however, emerges as the most effective method. Findings of comprehensive comparative analysis suggest that the proposed MRSRP model and the Monte Carlo method can serve as a useful tool for decision-makers to better deploy resources during emergency recovery operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA