Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Clin Invest ; 134(11)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598837

RESUMO

Tissue regeneration is limited in several organs, including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest an existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here, we identified neuronal differentiation features of MD cells that sense the local and systemic environment and secrete angiogenic, growth, and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models, and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors, including CCN1, as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue-regenerative therapeutic strategies.


Assuntos
Diferenciação Celular , Regeneração , Animais , Camundongos , Humanos , Rim/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/genética , Masculino
2.
J Cell Commun Signal ; 17(1): 7-11, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36790605

RESUMO

In celebration of the twentieth anniversary of the inception of the CCN society, and of the first post-Covid-19 live meeting, the executive board of the ICCNS had chosen Nice as the venue for the 11th International workshop on the CCN family of genes. On this occasion participation in the meeting was extended to colleagues from other cell signaling fields who were invited to present both an overview of their work and the future directions of their laboratory. Also, for the first time, the members of the JCCS Editorial Board were invited to participate in a JCCS special session during which all aspects of the journal « life ¼ were addressed and opened to free critical discussion. The scientific presentations and the discussions that followed showed once more that an expansion of the session topics was beneficial to the quality of the meeting and confirmed that the ARBIOCOM project discussed last April in Nice was now on track to be launched in 2023. The participants unanimously welcomed Professor Attramadal's proposition to organize the 2024, 12th International CCN workshop in Oslo, Norway.

3.
Methods Mol Biol ; 2582: 209-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370352

RESUMO

The remarkable regenerative capability of the liver has long been appreciated. Upon significant loss of liver tissue, the remnant liver can grow rapidly to restore the original liver mass through a combination of hepatocyte proliferation and hypertrophy to maintain homeostasis. Experimentally, 2/3 partial hepatectomy in mice has been used extensively as a model to dissect the molecular mechanism of liver regeneration and the genetic networks involved. Herein, we describe the protocols for partial hepatectomy and analyses of pertinent CCN protein functions.


Assuntos
Hepatectomia , Regeneração Hepática , Camundongos , Animais , Hepatectomia/métodos , Hepatócitos/metabolismo , Fígado/cirurgia , Hiperplasia , Proliferação de Células
4.
Methods Mol Biol ; 2582: 323-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370360

RESUMO

Vascular stiffness is an independent predictor of human vascular diseases and is linked to ischemia, diabetes, high blood pressure, hyperlipidemia, and/or aging. Blood vessel stiffening increases owing to changes in the microscale architecture and/or content of extracellular, cytoskeletal, and nuclear matrix proteins. These alterations, while best appreciated in large blood vessels, also gradually occur in the microvasculature and play an important role in the initiation and progression of numerous microangiopathies including diabetic retinopathy. Although macroscopic measurements of arterial stiffness by pulse wave velocity are often used for clinical diagnosis, stiffness changes of intact microvessels and their causative factors have not been characterized. Herein, we describe the use of atomic force microscopy (AFM) to determine stiffness of mouse retinal capillaries and assess its regulation by the cellular communication network (CCN) 1, a stiffness-sensitive gene-encoded matricellular protein. AFM yields reproducible measurements of retinal capillary stiffness in lightly fixed freshly isolated retinal flat mounts. AFM measurements also show significant changes in compliance properties of the retinal microvasculature of mice with endothelial-specific deletion of CCN1, indicating that CCN1 expression, or lack thereof, affects the mechanical properties of microvascular cells in vivo. Thus, AFM has the force sensitivity and the spatial resolution necessary to measure the local modulus of retinal capillaries in situ and eventually to investigate microvascular compliance heterogeneities as key components of disease pathogenesis.


Assuntos
Análise de Onda de Pulso , Doenças Vasculares , Camundongos , Humanos , Animais , Microscopia de Força Atômica , Retina/metabolismo , Endotélio , Microvasos , Doenças Vasculares/metabolismo
5.
Hepatol Commun ; 6(10): 2798-2811, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929736

RESUMO

Following inflammatory injury in the liver, neutrophils quickly infiltrate the injured tissue to defend against microbes and initiate the repair process; these neutrophils are short lived and rapidly undergo apoptosis. Hepatic stellate cells (HSCs) are the principal precursor cells that transdifferentiate into myofibroblast-like cells, which produce a large amount of extracellular matrix that promotes repair but can also lead to fibrosis if the injury becomes chronic. The matricellular protein cellular communication network factor 1 (CCN1) acts as a bridging molecule by binding phosphatidylserine in apoptotic cells and integrin αv ß3 in phagocytes, thereby triggering efferocytosis or phagocytic clearance of the apoptotic cells. Here, we show that CCN1 induces liver macrophage efferocytosis of apoptotic neutrophils in carbon tetrachloride (CCl4 )-induced liver injury, leading to the production of activated transforming growth factor (TGF)-ß1, which in turn induces HSC transdifferentiation into myofibroblast-like cells that promote fibrosis development. Consequently, knock-in mice expressing a single amino acid substitution in CCN1 rendering it unable to bind αv ß3 or induce efferocytosis are impaired in neutrophil clearance, production of activated TGF-ß1, and HSC transdifferentiation, resulting in greatly diminished liver fibrosis following exposure to CCl4 . Conclusion: These results reveal the crucial role of CCN1 in stimulating liver macrophage clearance of apoptotic neutrophils, a process that drives HSC transdifferentiation into myofibroblastic cells and underlies fibrogenesis in chronic liver injury.


Assuntos
Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Animais , Tetracloreto de Carbono/toxicidade , Células Estreladas do Fígado/metabolismo , Integrinas/metabolismo , Células de Kupffer/metabolismo , Cirrose Hepática/induzido quimicamente , Camundongos , Fosfatidilserinas , Fatores de Crescimento Transformadores
6.
JCI Insight ; 7(14)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708907

RESUMO

Senescent cells have long been associated with deleterious effects in aging-related pathologies, although recent studies have uncovered their beneficial roles in certain contexts, such as wound healing. We have found that hepatic stellate cells (HSCs) underwent senescence within 2 days after 2/3 partial hepatectomy (PHx) in young (2-3 months old) mice, and the elimination of these senescent cells by using the senolytic drug ABT263 or by using a genetic mouse model impaired liver regeneration. Senescent HSCs secrete IL-6 and CXCR2 ligands as part of the senescence-associated secretory phenotype, which induces multiple signaling pathways to stimulate liver regeneration. IL-6 activates STAT3, induces Yes-associated protein (YAP) activation through SRC family kinases, and synergizes with CXCL2 to activate ERK1/2 to stimulate hepatocyte proliferation. The administration of either IL-6 or CXCL2 partially restored liver regeneration in mice with senescent cell elimination, and the combination of both fully restored liver weight recovery. Furthermore, the matricellular protein central communication network factor 1 (CCN1, previously called CYR61) was rapidly elevated in response to PHx and induced HSC senescence. Knockin mice expressing a mutant CCN1 unable to bind integrin α6ß1 were deficient in senescent cells and liver regeneration after PHx. Thus, HSC senescence, largely induced by CCN1, is a programmed response to PHx and plays a critical role in liver regeneration through signaling pathways activated by IL-6 and ligands of CXCR2.


Assuntos
Células Estreladas do Fígado , Regeneração Hepática , Animais , Hepatectomia , Células Estreladas do Fígado/metabolismo , Interleucina-6/metabolismo , Ligantes , Regeneração Hepática/fisiologia , Camundongos , Receptores de Interleucina-8B
7.
Aging (Albany NY) ; 14(3): 1200-1213, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148282

RESUMO

CCN1/CYR61 promotes angiogenesis, tumor growth and chemoresistance by binding to its integrin receptor αvß3 in endothelial and breast cancer (BC) cells. CCN1 controls also tissue regeneration by engaging its integrin receptor α6ß1 to induce fibroblast senescence. Here, we explored if the ability of CCN1 to drive an endocrine resistance phenotype in estrogen receptor-positive BC cells relies on interactions with either αvß3 or α6ß1. First, we took advantage of site-specific mutagenesis abolishing the CCN1 receptor-binding sites to αvß3 and α6ß1 to determine the integrin partner responsible for CCN1-driven endocrine resistance. Second, we explored a putative nuclear role of CCN1 in regulating ERα-driven transcriptional responses. Retroviral forced expression of a CCN1 derivative with a single amino acid change (D125A) that abrogates binding to αvß3 partially phenocopied the endocrine resistance phenotype induced upon overexpression of wild-type (WT) CCN1. Forced expression of the CCN1 mutant TM, which abrogates all the T1, H1, and H2 binding sites to α6ß1, failed to bypass the estrogen requirement for anchorage-independent growth or to promote resistance to tamoxifen. Wild-type CCN1 promoted estradiol-independent transcriptional activity of ERα and enhanced ERα agonist response to tamoxifen. The α6ß1-binding-defective TM-CCN1 mutant lost the ERα co-activator-like behavior of WT-CCN1. Co-immunoprecipitation assays revealed a direct interaction between endogenous CCN1 and ERα, and in vitro approaches confirmed the ability of recombinant CCN1 to bind ERα. CCN1 signaling via α6ß1, but not via αvß3, drives an endocrine resistance phenotype that involves a direct binding of CCN1 to ERα to regulate its transcriptional activity in ER+ BC cells.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/genética , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Integrina alfa6beta1/metabolismo , Integrinas , Tamoxifeno/farmacologia
8.
Nat Metab ; 2(10): 1034-1045, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839596

RESUMO

Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.


Assuntos
Frutose/farmacologia , Inflamação/metabolismo , Lipogênese/efeitos dos fármacos , Acetilcoenzima A/farmacologia , Animais , Endotoxemia/sangue , Feminino , Frutosefosfatos/farmacologia , Microbioma Gastrointestinal , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Intestinos/efeitos dos fármacos , Lipidômica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regeneração/efeitos dos fármacos , Receptores Toll-Like/agonistas
9.
Nat Commun ; 11(1): 1242, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144270

RESUMO

Expression of the matricellular protein CCN1 (CYR61) is associated with inflammation and is required for successful wound repair. Here, we show that CCN1 binds bacterial pathogen-associated molecular patterns including peptidoglycans of Gram-positive bacteria and lipopolysaccharides of Gram-negative bacteria. CCN1 opsonizes methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa and accelerates their removal by phagocytosis and increased production of bactericidal reactive oxygen species in macrophages through the engagement of integrin αvß3. Mice with myeloid-specific Ccn1 deletion and knock-in mice expressing CCN1 unable to bind αvß3 are more susceptible to infection by S. aureus or P. aeruginosa, resulting in increased mortality and organ colonization. Furthermore, CCN1 binds directly to TLR2 and TLR4 to activate MyD88-dependent signaling, cytokine expression and neutrophil mobilization. CCN1 is therefore a pattern recognition receptor that opsonizes bacteria for clearance and functions as a damage-associated molecular pattern to activate inflammatory responses, activities that contribute to wound healing and tissue repair.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Proteínas Opsonizantes/metabolismo , Infecções por Pseudomonas/imunologia , Infecções Estafilocócicas/imunologia , Receptores Toll-Like/metabolismo , Animais , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Humanos , Integrina alfaVbeta3/imunologia , Integrina alfaVbeta3/metabolismo , Masculino , Staphylococcus aureus Resistente à Meticilina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Opsonizantes/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Fagocitose/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Células Sf9 , Transdução de Sinais/imunologia , Infecções Estafilocócicas/microbiologia , Receptores Toll-Like/imunologia
10.
EMBO J ; 39(5): e101679, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32009252

RESUMO

Adult neural stem cells (NSCs) reside in specialized niches, which hold a balanced number of NSCs, their progeny, and other cells. How niche capacity is regulated to contain a specific number of NSCs remains unclear. Here, we show that ependyma-derived matricellular protein CCN1 (cellular communication network factor 1) negatively regulates niche capacity and NSC number in the adult ventricular-subventricular zone (V-SVZ). Adult ependyma-specific deletion of Ccn1 transiently enhanced NSC proliferation and reduced neuronal differentiation in mice, increasing the numbers of NSCs and NSC units. Although proliferation of NSCs and neurogenesis seen in Ccn1 knockout mice eventually returned to normal, the expanded NSC pool was maintained in the V-SVZ until old age. Inhibition of EGFR signaling prevented expansion of the NSC population observed in CCN1 deficient mice. Thus, ependyma-derived CCN1 restricts NSC expansion in the adult brain to maintain the proper niche capacity of the V-SVZ.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Neurogênese/fisiologia , Transdução de Sinais , Células-Tronco Adultas/fisiologia , Animais , Encéfalo , Proteína Rica em Cisteína 61/genética , Epêndima/citologia , Epêndima/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
13.
J Cell Commun Signal ; 12(1): 273-279, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29357009

RESUMO

The expression of Ccn1 (Cyr61) is essential for cardiovascular development during embryogenesis, whereas in adulthood it is associated with inflammation, wound healing, injury repair, and related pathologies including fibrosis and cancer. Recent studies have found that CCN1 plays a critical role in promoting wound healing and tissue repair. Mechanistically, CCN1 functions through direct interaction with specific integrin receptors expressed in various cell types in the wound tissue microenvironment to coordinate diverse cellular functions for repair. Here we briefly summarize the current knowledge on the functions of CCN1 in tissue injury repair and discuss pertinent unanswered questions.

14.
J Clin Invest ; 128(1): 97-107, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29293097

RESUMO

Fibrosis is the excessive accumulation of extracellular matrix that often occurs as a wound healing response to repeated or chronic tissue injury, and may lead to the disruption of organ architecture and loss of function. Although fibrosis was previously thought to be irreversible, recent evidence indicates that certain circumstances permit the resolution of fibrosis when the underlying causes of injury are eradicated. The mechanism of fibrosis resolution encompasses degradation of the fibrotic extracellular matrix as well as elimination of fibrogenic myofibroblasts through their adaptation of various cell fates, including apoptosis, senescence, dedifferentiation, and reprogramming. In this Review, we discuss the present knowledge and gaps in our understanding of how matrix degradation is regulated and how myofibroblast cell fates can be manipulated, areas that may identify potential therapeutic approaches for fibrosis.


Assuntos
Apoptose , Desdiferenciação Celular , Reprogramação Celular , Senescência Celular , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Animais , Matriz Extracelular/patologia , Fibrose , Humanos , Miofibroblastos/patologia
15.
Pediatr Res ; 82(5): 863-871, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28700567

RESUMO

BackgroundCystein-rich protein 61 (Cyr61/CCN1) is a member of the CCN family of matricellular proteins that has an important role in tissue development and remodeling. However, the role of CCN1 in the pathogenesis of bronchopulmonary dysplasia (BPD) is unknown. Accordingly, we have investigated the effects of CCN1 on a hyperoxia-induced lung injury model in neonatal rats.MethodsIn experiment 1, newborn rats were randomized to room air (RA) or 85% oxygen (O2) for 7 or 14 days, and we assessed the expression of CCN1. In experiment 2, rat pups were exposed to RA or O2 and received placebo or recombinant CCN1 by daily intraperitoneal injection for 10 days. The effects of CCN1 on hyperoxia-induced lung inflammation, alveolar and vascular development, vascular remodeling, and right ventricular hypertrophy (RVH) were observed.ResultsIn experiment 1, hyperoxia downregulated CCN1 expression. In experiment 2, treatment with recombinant CCN1 significantly decreased macrophage and neutrophil infiltration, reduced inflammasome activation, increased alveolar and vascular development, and reduced vascular remodeling and RVH in the hyperoxic animals.ConclusionThese results demonstrate that hyperoxia-induced lung injury is associated with downregulated basal CCN1 expression, and treatment with CCN1 can largely reverse hyperoxic injury.


Assuntos
Anti-Inflamatórios/farmacologia , Displasia Broncopulmonar/prevenção & controle , Proteína Rica em Cisteína 61/farmacologia , Hiperóxia/complicações , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Modelos Animais de Doenças , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/prevenção & controle , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Pneumonia/etiologia , Pneumonia/prevenção & controle , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Fatores de Tempo , Remodelação Vascular/efeitos dos fármacos
16.
Sci Rep ; 7(1): 1405, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469167

RESUMO

CYR61-CTGF-NOV (CCN)1 is a dynamically expressed extracellular matrix (ECM) protein with critical functions in cardiovascular development and tissue repair. Angiogenic endothelial cells (ECs) are a major cellular source of CCN1 which, once secreted, associates with the ECM and the cell surface and tightly controls the bidirectional flow of information between cells and the surrounding matrix. Endothelium-specific CCN1 deletion in mice using a cre/lox strategy induces EC hyperplasia and causes blood vessels to coalesce into large flat hyperplastic sinuses with no distinctive hierarchical organization. This is consistent with the role of CCN1 as a negative feedback regulator of vascular endothelial growth factor (VEGF) receptor activation. In the mouse model of oxygen-induced retinopathy (OIR), pericytes become the predominant CCN1 producing cells. Pericyte-specific deletion of CCN1 significantly decreases pathological retinal neovascularization following OIR. CCN1 induces the expression of the non-canonical Wnt5a in pericyte but not in EC cultures. In turn, exogenous Wnt5a inhibits CCN1 gene expression, induces EC proliferation and increases hypersprouting. Concordantly, treatment of mice with TNP470, a non-canonical Wnt5a inhibitor, reestablishes endothelial expression of CCN1 and significantly decreases pathological neovascular growth in OIR. Our data highlight the significance of CCN1-EC and CCN1-pericyte communication signals in driving physiological and pathological angiogenesis.


Assuntos
Proteína Rica em Cisteína 61/metabolismo , Células Endoteliais/metabolismo , Pericitos/metabolismo , Neovascularização Retiniana/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Isquemia/complicações , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/etiologia , Via de Sinalização Wnt
17.
Methods Mol Biol ; 1489: 361-376, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27734389

RESUMO

The embryonic lethality of mice with conventional global knockout of Ccn1 (Cyr61) precludes analysis of Ccn1 functions in late embryonic development or in adulthood. To circumvent this limitation, we have generated conditional knockout mice that allow cell type-specific deletion of Ccn1, and constructed an allelic series of Ccn1 knockin mice that express CCN1 defective for binding specific integrins in lieu of the wild type protein. Here we describe the construction of these mice and discuss how analysis of these animals can provide unique insights into Ccn1 functions mediated through specific integrin receptors. It is anticipated that future analysis of mice carrying specific mutations in genes of the Ccn family will be greatly facilitated by application of the CRISPR/Cas9 gene editing methodology.


Assuntos
Alelos , Proteína Rica em Cisteína 61/genética , Animais , Proteína Rica em Cisteína 61/metabolismo , Células-Tronco Embrionárias , Fibroblastos , Ordem dos Genes , Marcação de Genes , Loci Gênicos , Camundongos , Camundongos Transgênicos , Mutação , Plasmídeos/genética
18.
J Cell Commun Signal ; 11(1): 15-23, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27752926

RESUMO

The expression of Ccn2 (CTGF) has been linked to fibrosis in many tissues and pathologies, although its activities in fibroblastic cells and precise mechanism of action in fibrogenesis are still controversial. Here, we showed that CCN2 can induce cellular senescence in fibroblasts both in vitro and in vivo, whereupon senescent cells express an anti-fibrotic "senescence-associated secretory phenotype" (SASP) that includes upregulation of matrix metalloproteinases and downregulation of collagen. Mechanistically, CCN2 induces fibroblast senescence through integrin α6ß1-mediated accumulation of reactive oxygen species, leading to activation of p53 and induction of p16INK4a. In cutaneous wound healing, Ccn2 expression is highly elevated only during the initial inflammatory phase and quickly declines thereafter to a low level during the proliferation and maturation phases of healing when myofibroblasts play a major role. Consistent with this expression kinetics, knockdown of Ccn2 has little effect on the rate of wound closure, formation of senescent cells, or collagen content of the wounds. However, application of purified CCN2 protein on cutaneous wounds leads to induction of senescent cells, expression of SASP, and reduction of collagen content. These results show that CCN2 can induce cellular senescence in fibroblasts and is capable of exerting an anti-fibrotic effect in a context-dependent manner.

19.
J Cell Commun Signal ; 10(2): 121-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27098435

RESUMO

The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvß3, αvß5, α5ß1, α6ß1, αIIbß3, αMß2, and αDß2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA