Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Animals (Basel) ; 13(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443920

RESUMO

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a major threat to amphibians, yet there are no reports of major disease impacts in East Asian frogs. Genetic variation of the major histocompatibility complex (MHC) has been associated with resistance to Bd in frogs from East Asia and worldwide. Using transcriptomic data collated from 11 Japanese frog species (one individual per species), we isolated MHC class I and IIb sequences and validated using molecular cloning. We then compared MHC from Japanese frogs and other species worldwide, with varying Bd susceptibility. Supertyping analysis, which groups MHC alleles based on physicochemical properties of peptide binding sites, identified that all examined East Asian frogs contained at least one MHC-IIb allele belonging to supertype ST-1. This indicates that, despite the large divergence times between some Japanese frogs (up to 145 million years), particular functional properties in the peptide binding sites of MHC-II are conserved among East Asian frogs. Furthermore, preliminary analysis using NetMHCIIpan-4.0, which predicts potential Bd-peptide binding ability, suggests that MHC-IIb ST-1 and ST-2 have higher overall peptide binding ability than other supertypes, irrespective of whether the peptides are derived from Bd, other fungi, or bacteria. Our findings suggest that MHC-IIb among East Asian frogs may have co-evolved under the same selective pressure. Given that Bd originated in this region, it may be a major driver of MHC evolution in East Asian frogs.

2.
Ecol Evol ; 10(17): 9466-9473, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953075

RESUMO

"Hot spring frog" is an informal name used for the Japanese stream tree frog (Buergeria japonica), which is widely distributed in Taiwan and the Ryukyu Archipelago in Japan. Some populations of the species are known to inhabit hot springs. However, water temperature can be extremely high around the sources of hot springs. Thus, it is questionable whether B. japonica selectively inhabits such dangerous environments. To address this question, we conducted a series of observations of water temperature preferences of a hot spring population of B. japonica in Kuchinoshima Island in Japan: (a) a field observation of tadpole density in water pools of different temperatures, (b) a field observation of water temperatures where adult males appear for breeding, and (c) an indoor observation of water temperatures selected by adult females for oviposition. As a result, tadpoles showed a higher density in cooler water. Adult males avoided water pools hotter than 37°C, and adult females selected cooler pools for oviposition. Camera records also showed that adult individuals tend to appear around cooler pools. Thus, we did not find any support for the hypothesis that hot spring frogs prefer hot water. Conversely, they apparently tended to prefer cooler water if it was available. Water temperatures around the sources of the hot spring exceed thermal tolerances of the species and could be a strong selective pressure on the population. Thus, the ability to sense and avoid lethal temperatures may be a key ecological and physiological characteristic for the species that inhabit hot springs.

3.
PLoS One ; 15(8): e0236515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764757

RESUMO

With the increasing availability of high quality genomic data, there is opportunity to deeply explore the genealogical relationships of different gene loci between closely related species. In this study, we utilized genomes of Xenopus laevis (XLA, a tetraploid species with (L) and (S) sub-genomes) and X. tropicalis (XTR, a diploid species) to investigate whether synonymous substitution rates among orthologous or homoeologous genes displayed any heterogeneity. From over 1500 orthologous/homoeologous genes collected, we calculated proportion of synonymous substitutions between genomes/sub-genomes (k) and found variation within and between chromosomes. Within most chromosomes, we identified higher k with distance from the centromere, likely attributed to higher substitution rates and recombination in these regions. Using maximum likelihood methods, we identified further evidence supporting rate heterogeneity, and estimated species divergence times and ancestral population sizes. Estimated species divergence times (XLA.L-XLA.S: ~25.5 mya; XLA-XTR: ~33.0 mya) were slightly younger compared to a past study, attributed to consideration of population size in our study. Meanwhile, we found very large estimated population size in the ancestral populations of the two species (NA = 2.55 x 106). Local hybridization and population structure, which have not yet been well elucidated in frogs, may be a contributing factor to these possible large population sizes.


Assuntos
Evolução Molecular , Genoma/genética , Mutação Silenciosa/genética , Xenopus laevis/genética , Animais , Cromossomos , Heterogeneidade Genética , Hibridização Genética , Hibridização in Situ Fluorescente , Filogenia
4.
Animals (Basel) ; 10(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935873

RESUMO

Anuran amphibians undergo major physiological and immunological changes following metamorphosis. Genes of the major histocompatibility complex (MHC) code for receptors important for vertebrate adaptive immunity. We used qPCR to measure skin MHC expression in six different ontological stages of Rana ornativentris (n = 10 per stage); normalized MHC class I and II expression at the mRNA level was significantly higher in stage 28 (mid-larval) compared to stages 24/25 (early-larval) tadpoles. Subsequent transcriptomic analyses of three tadpole (early-, mid-, and late-larval) stages of R. ornativentris and model species Xenopus tropicalis focused on mRNA expression of immune-related genes in the skin. Normalized expression of most MHC class I and II transcripts in both species were significantly higher in mid- and late-larval stages compared to early-larval stage. In addition, gene ontology (GO) analyses of differentially expressed transcripts revealed several immune-related GO terms that were significantly upregulated from the mid-larval stage. Our study provides evidence that both MHC class I and II is expressed during development in both R. ornativentris and X. tropicalis.

5.
PeerJ ; 7: e7597, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592172

RESUMO

Recent advancement of environmental DNA (eDNA) methods for surveying species in aquatic ecosystems has been used for various organisms and contributed to monitoring and conservation of species and environments. Amphibians are one of the promising taxa which could be monitored efficiently by applying quantitative PCR (qPCR) or next generation sequencing to eDNA. However, the cost of eDNA detection using these approaches can be quite high and requires instruments that are not usually installed in ecology laboratories. For aiding researchers in starting eDNA studies of amphibians, especially those not specialized in molecular biology, we developed a cost efficient protocol using PCR-RFLP method. We attempted to detect eDNA of three Japanese Rana species (Rana japonica, Rana ornativentris, and Rana tagoi tagoi) in various spatial scales including an area close to the Fukushima nuclear power plant where the environment is recovering after the disaster in 2011. Our PCR-RFLP protocol was successful in detecting Rana species in static water in both laboratory and field; however, it could not detect Rana species in non-static water samples from the field. Even a more sensitive detection method (standard qPCR) was unable to detect frogs in all non-static water samples. We speculate that our new protocol is effective for frogs living in lentic habitats, but not for lotic habitats which may still require the gold standard of field observation for detection approach.

6.
PeerJ ; 6: e4842, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844986

RESUMO

Toll-like receptors (TLRs) are an important component of innate immunity, the first line of pathogen defence. One of the major roles of TLRs includes recognition of pathogen-associated molecular patterns. Amphibians are currently facing population declines and even extinction due to chytridiomycosis caused by the Batrachochytrium dendrobatidis (Bd) fungus. Evidence from other vertebrates shows that TLR2 and TLR4 are involved in innate immunity against various fungi. Such genes therefore may play a functional role in amphibian-chytridiomycosis dynamics. Frogs from East Asia appear to be tolerant to Bd, so we examined the genetic diversity that underlies TLR2 and TLR4 from three Japanese Ranidae frog species, Rana japonica, R. ornativentris and R. tagoi tagoi (n = 5 per species). We isolated 27 TLR2 and 20 TLR4 alleles and found that these genes are evolutionarily conserved, with overall evidence supporting purifying selection. In contrast, site-by-site analysis of selection identified several specific codon sites under positive selection, some of which were located in the variable leucine rich repeat domains. In addition, preliminary expression levels of TLR2 and TLR4 from transcriptome data showed overall low expression. Although it remains unclear whether infectious pathogens are a selective force acting on TLRs of Japanese frogs, our results support that certain sites in TLRs of these species may have experienced pathogen-mediated selection.

7.
BMC Genomics ; 18(1): 994, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29281968

RESUMO

BACKGROUND: In Japan and East Asia, endemic frogs appear to be tolerant or not susceptible to chytridiomycosis, a deadly amphibian disease caused by the chytrid fungus Batrachochytridium dendrobatidis (Bd). Japanese frogs may have evolved mechanisms of immune resistance to pathogens such as Bd. This study characterizes immune genes expressed in various tissues of healthy Japanese Rana frogs. RESULTS: We generated transcriptome data sets of skin, spleen and blood from three adult Japanese Ranidae frogs (Japanese brown frog Rana japonica, the montane brown frog Rana ornativentris, and Tago's brown frog Rana tagoi tagoi) as well as whole body of R. japonica and R. ornativentris tadpoles. From this, we identified tissue- and stage-specific differentially expressed genes; in particular, the spleen was most enriched for immune-related genes. A specific immune gene, major histocompatibility complex class IIB (MHC-IIB), was further characterized due to its role in pathogen recognition. We identified a total of 33 MHC-IIB variants from the three focal species (n = 7 individuals each), which displayed evolutionary signatures related to increased MHC variation, including balancing selection. Our supertyping analyses of MHC-IIB variants from Japanese frogs and previously studied frog species identified potential physiochemical properties of MHC-II that may be important for recognizing and binding chytrid-related antigens. CONCLUSIONS: This is one of the first studies to generate transcriptomic resources for Japanese frogs, and contributes to further understanding the immunogenetic factors associated with resistance to infectious diseases in amphibians such as chytridiomycosis. Notably, MHC-IIB supertyping analyses identified unique functional properties of specific MHC-IIB alleles that may partially contribute to Bd resistance, and such properties provide a springboard for future experimental validation.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Ranidae/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/classificação , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Filogenia , Ranidae/embriologia , Ranidae/imunologia , Ranidae/metabolismo , Alinhamento de Sequência , Baço/imunologia
8.
Immunogenetics ; 68(10): 797-806, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27418258

RESUMO

The major histocompatibility complex (MHC) is a key component of adaptive immunity in all jawed vertebrates, and understanding the evolutionary mechanisms that have shaped these genes in amphibians, one of the earliest terrestrial tetrapods, is important. We characterised MHC class I variation in three common Japanese Rana species (Rana japonica, Rana ornativentris and Rana tagoi tagoi) and identified a total of 60 variants from 21 individuals. We also found evolutionary signatures of gene duplication, recombination and balancing selection (including trans-species polymorphism), all of which drive increased MHC diversity. A unique feature of MHC class I from these three Ranidae species includes low synonymous differences per site (d S) within species, which we attribute to a more recent diversification of these sequences or recent gene duplication. The resulting higher d N/d S ratio relative to other anurans studied could be related to stronger selection pressure at peptide binding sites. This is one of the first studies to investigate MHC in Japanese amphibians and permits further exploration of the polygenetic factors associated with resistance to infectious diseases.


Assuntos
Evolução Biológica , Variação Genética/genética , Antígenos de Histocompatibilidade Classe I/genética , Ranidae/genética , Seleção Genética/genética , Sequência de Aminoácidos , Animais , Genótipo , Filogenia , Ranidae/classificação , Homologia de Sequência de Aminoácidos
9.
J Hered ; 106(4): 395-402, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25908666

RESUMO

Major histocompatibility complex (MHC) class II molecules have an important role in vertebrate adaptive immunity, being responsible for recognizing, binding, and presenting specific antigenic peptides to T lymphocytes. Here, we study the MHC class II DQB and DRB exon 2 genes of the Australian sea lion (Neophoca cinerea), an endangered pinniped species that experiences high pup mortality. Following characterization of N. cinerea DQB and DRB by molecular cloning, and evaluation of diversity in pups across 2 colonies using variant screening (n = 47), 3 DQB alleles and 10 DRB variants (including 1 pseudogene allele) were identified. The higher diversity at DRB relative to DQB is consistent with other studies in marine mammals. Despite overall lower MHC class II allelic diversity relative to some other pinniped species, we observed similar levels of nucleotide diversity and selection in N. cinerea. In addition, we provide support for recent divergence of MHC class II alleles. The characterization of MHC class II diversity in the Australian sea lion establishes a baseline for further investigation of associations with disease, including endemic hookworm infection, and contributes to the conservation management of this species.


Assuntos
Genes MHC da Classe II , Variação Genética , Leões-Marinhos/genética , Alelos , Sequência de Aminoácidos , Animais , Austrália , Espécies em Perigo de Extinção , Éxons , Cadeias beta de HLA-DQ/genética , Cadeias beta de HLA-DR/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
10.
PeerJ ; 2: e443, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024912

RESUMO

Chlamydiosis, the most common infectious disease in koalas, can cause chronic urogenital tract fibrosis and infertility. High titres of serum immunoglobulin G against 10 kDa and 60 kDa chlamydial heat-shock proteins (c-hsp10 and c-hsp60) are associated with fibrous occlusion of the koala uterus and uterine tube. Murine and human studies have identified associations between specific major histocompatibility complex class II (MHCII) alleles or genotypes, and higher c-hsp 60 antibody levels or chlamydia-associated disease and infertility. In this study, we characterised partial MHCII DAB and DBB genes in female koalas (n = 94) from a single geographic population, and investigated associations among antibody responses to c-hsp60 quantified by ELISA, susceptibility to chlamydial infection, or age. The identification of three candidate MHCII variants provides additional support for the functional role of MHCII in the koala, and will inform more focused future studies. This is the first study to investigate an association between MHC genes with chlamydial pathogenesis in a non-model, free-ranging species.

11.
PeerJ ; 2: e280, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688858

RESUMO

Investigation of the immune response of the koala (Phascolarctos cinereus) is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV), which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala's susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1) and Th2 lymphocyte responses are important to an individual's susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala's adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10) and interferon gamma (IFNγ) along with CD4 and CD8ß. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A). Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not consistently up-regulated by any of the protocols. Expression of CD4 and CD8ß was down-regulated by mitogen stimulation. We found that the reference genes GAPDH and 28s are valid for normalising cytokine expression by koala lymphocytes after mitogen stimulation.

12.
Immunogenetics ; 65(1): 37-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23089959

RESUMO

Major histocompatibility complex (MHC) class II molecules have an integral role in the adaptive immune response, as they bind and present antigenic peptides to T helper lymphocytes. In this study of koalas, species-specific primers were designed to amplify exon 2 of the MHC class II DA and DB genes, which contain much of the peptide-binding regions of the α and ß chains. A total of two DA α1 domain variants and eight DA ß1 (DAB), three DB α1 and five DB ß1 variants were amplified from 20 koalas from two free-living populations from South East Queensland and the Port Macquarie region in northern New South Wales. We detected greater variation in the ß1 than in the α1 domains as well as evidence of positive selection in DAB. The present study provides a springboard to future investigation of the role of MHC in disease susceptibility in koalas.


Assuntos
Genes MHC da Classe II , Phascolarctidae/genética , Phascolarctidae/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Sequência de Aminoácidos , Animais , Infecções por Chlamydophila/imunologia , Infecções por Chlamydophila/veterinária , Primers do DNA , Amplificação de Genes , Variação Genética , Genótipo , Antígenos de Histocompatibilidade Classe II/química , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
13.
Vet Immunol Immunopathol ; 147(1-2): 35-43, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22551982

RESUMO

Understanding and measuring immune activity of the koala (Phascolarctos cinereus), is important to studies of the epidemiology and impact of the widespread chlamydial and koala retroviral (KoRV) infections that occur in this iconic but increasingly threatened species. To explore the interaction of disease and immunity, and to assess the potential for use of class II major histocompatibility complex (MHCII) upregulation as an indicator of lymphocyte activation in in vitro immune assays, we have investigated the expression of MHCII in koala lymphocytes by flow cytometry. MHCII expression was upregulated in mitogen stimulated B lymphocytes in vitro but no such increase was detected in vivo in free-living koalas with active inflammation. In assessing phenotypic baseline data of captive koalas, we have identified that MHCII is expressed predominantly on circulating B lymphocytes (85.7 ± 2.4%) but on very few T lymphocytes (3.4 ± 1.9%), even following activation, and suggest that the latter finding might be compensated by the greater absolute numbers of peripheral blood B lymphocytes in this species relative to many eutherian species.


Assuntos
Antígenos de Histocompatibilidade Classe II/análise , Linfócitos/imunologia , Phascolarctidae/imunologia , Animais , Feminino , Imunofenotipagem , Ativação Linfocitária , Masculino , Regulação para Cima
14.
Am J Physiol Endocrinol Metab ; 294(2): E316-25, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18029440

RESUMO

Insulin resistance of skeletal muscle is a major defect in obesity and type 2 diabetes. Insulin resistance has been associated with a chronic subclinical inflammatory state in epidemiological studies and specifically with activation of the inhibitor kappaB kinase (IkappaBK)-nuclear factor-kappaB (NF-kappaB) pathway. However, it is unclear whether this pathway plays a role in mediating insulin resistance in muscle in vivo. We separately overexpressed the p65 subunit of NF-kappaB and IkappaBKbeta in single muscles of rats using in vivo electrotransfer and compared the effects after 1 wk vs. paired contralateral control muscles. A 64% increase in p65 protein (P < 0.001) was sufficient to cause muscle fiber atrophy but had no effect on glucose disposal or glycogen storage in muscle under hyperinsulinemic-euglycemic clamp conditions. Similarly, a 650% increase in IkappaBKbeta expression (P < 0.001) caused a significant reduction in IkappaB protein but also had no effect on clamp glucose disposal after lipid infusion. In fact, IkappaBKbeta overexpression in particular caused increases in activating tyrosine phosphorylation of insulin receptor substrate-1 (24%; P = 0.02) and serine phosphorylation of Akt (23%; P < 0.001), implying a moderate increase in flux through the insulin signaling cascade. Interestingly, p65 overexpression resulted in a negative feedback reduction of 36% in Toll-like receptor (TLR)-2 (P = 0.03) but not TLR-4 mRNA. In conclusion, activation of the IkappaBKbeta-NF-kappaB pathway in muscle does not seem to be an important local mediator of insulin resistance.


Assuntos
Quinase I-kappa B/fisiologia , Resistência à Insulina/fisiologia , NF-kappa B/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Retroalimentação Fisiológica , Técnicas de Transferência de Genes , Vetores Genéticos , Glucose/metabolismo , Técnica Clamp de Glucose , Imuno-Histoquímica , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA