Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
ArXiv ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38351940

RESUMO

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured bioimage data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable bioimage data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing bioimage data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). Here, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse bioimage data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made generating community standard practices for imaging Quality Control (QC) and metadata (Faklaris et al., 2022; Hammer et al., 2021; Huisman et al., 2021; Microscopy Australia, 2016; Montero Llopis et al., 2021; Rigano et al., 2021; Sarkans et al., 2021). We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

2.
PLoS Genet ; 19(11): e1010777, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011284

RESUMO

Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Humanos , Camundongos , Animais , Doenças das Valvas Cardíacas/genética , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética
3.
Bone ; 158: 116371, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192969

RESUMO

Osteoporosis is a skeletal disease which is characterised by reduced bone mass and microarchitecture, with a subsequent loss of strength that predisposes to fragility and risk of fractures. The pathogenesis of falling bone mineral density, ultimately leading to a diagnosis of osteoporosis is incompletely understood but the disease is currently thought to be multifactorial. Humans are known to accumulate mitochondrial mutations and respiratory chain deficiency with age and mounting evidence suggests that this may indeed be the overarching cause intrinsic to the changing phenotype in advancing age and age-related disease. Mitochondrial mutations are detectable from the age of about 30 years onwards. Mitochondria contain their own genome which encodes 13 essential mitochondrial proteins and accumulates somatic variants at up to 10 times the rate of the nuclear genome. Once the concentration of any pathogenic mitochondrial genome variant exceeds a threshold, respiratory chain deficiency and cellular dysfunction occur. The PolgD257A/D257A mouse model is a knock-in mutant that expresses a proof-reading-deficient version of PolgA, a nuclear encoded subunit of mtDNA polymerase. These mice are a useful model of age-related accumulation of mtDNA mutations in humans since their defective proof-reading mechanism leads to a mitochondrial DNA mutation rate 3-5 times higher than in wild-type mice. These mice showed enhanced levels of age-related osteoporosis along with respiratory chain deficiency in osteoblasts. To explore whether respiratory chain deficiency is also seen in human osteoblasts, we developed a protocol and analysis framework for imaging mass cytometry in bone tissue sections to analyse osteoblasts in situ. By comparing bone tissue sampled at one timepoint from femoral neck of 10 older healthy volunteers aged 40-85 with samples from young patients aged 1-19, we have identified complex I defect in osteoblasts from 6 out of 10 older volunteers, complex II defect in 2 out of 10 older volunteers, complex IV defect in 1 out of 10 older volunteers and complex V defect in 4 out of 10 older volunteers. These observations are consistent with findings from the PolgD257A/D257A mouse model and suggest that respiratory chain deficiency, as a consequence of the accumulation of age-related pathogenic mitochondrial DNA mutations, may play a significant role in the pathogenesis of human age-related osteoporosis.


Assuntos
DNA Mitocondrial , Mitocôndrias , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Humanos , Citometria por Imagem , Camundongos , Mitocôndrias/metabolismo , Mutação/genética , Osteoblastos/metabolismo
8.
Nat Methods ; 18(12): 1489-1495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34862503

RESUMO

For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.


Assuntos
Metadados , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Aplicativos Móveis , Linguagens de Programação , Software , Animais , Linhagem Celular , Biologia Computacional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Reconhecimento Automatizado de Padrão , Controle de Qualidade , Reprodutibilidade dos Testes , Interface Usuário-Computador , Fluxo de Trabalho
9.
J Microsc ; 284(1): 56-73, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214188

RESUMO

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.


Assuntos
Microscopia , Padrões de Referência , Reprodutibilidade dos Testes
11.
Sci Rep ; 10(1): 11643, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669663

RESUMO

The pathogenesis of declining bone mineral density, a universal feature of ageing, is not fully understood. Somatic mitochondrial DNA (mtDNA) mutations accumulate with age in human tissues and mounting evidence suggests that they may be integral to the ageing process. To explore the potential effects of mtDNA mutations on bone biology, we compared bone microarchitecture and turnover in an ageing series of wild type mice with that of the PolgAmut/mut mitochondrial DNA 'mutator' mouse. In vivo analyses showed an age-related loss of bone in both groups of mice; however, it was significantly accelerated in the PolgAmut/mut mice. This accelerated rate of bone loss is associated with significantly reduced bone formation rate, reduced osteoblast population densities, increased osteoclast population densities, and mitochondrial respiratory chain deficiency in osteoblasts and osteoclasts in PolgAmut/mut mice compared with wild-type mice. In vitro assays demonstrated severely impaired mineralised matrix formation and increased osteoclast resorption by PolgAmut/mut cells. Finally, application of an exercise intervention to a subset of PolgAmut/mut mice showed no effect on bone mass or mineralised matrix formation in vitro. Our data demonstrate that mitochondrial dysfunction, a universal feature of human ageing, impairs osteogenesis and is associated with accelerated bone loss.


Assuntos
Envelhecimento/genética , Reabsorção Óssea/genética , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Osteogênese/genética , Osteoporose/genética , Animais , Densidade Óssea/fisiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Calcificação Fisiológica , Contagem de Células , DNA Polimerase gama/deficiência , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fêmur/metabolismo , Fêmur/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Mutação , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Condicionamento Físico Animal
12.
Chemistry ; 25(65): 14983-14998, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515919

RESUMO

Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer.

13.
PLoS One ; 13(6): e0199996, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953534

RESUMO

Here we provide new technology for generating human peptidergic nociceptive sensory neurons in a straightforward and efficient way. The cellular source, human epidermal neural crest stem cells (hEPI-NCSC), consists of multipotent somatic stem cells that reside in the bulge of hair follicles. hEPI-NCSC and primary sensory neurons have a common origin, the embryonic neural crest. For directed differentiation, hEPI-NCSC were exposed to pertinent growth factors and small molecules in order to modulate master signalling networks involved in differentiation of neural crest cells into postmitotic peptidergic sensory neurons during embryonic development. The neuronal populations were homogenous in regard to antibody marker expression. Cells were immunoreactive for essential master regulatory genes, including NGN1/2, SOX10, and BRN3a among others, and for the pain-mediating genes substance P (SP), calcitonin gene related protein (CGRP) and the TRPV1 channel. Approximately 30% of total cells responded to capsaicin, indicating that they expressed an active TRPV1 channel. In summary, hEPI-NCSC are a biologically relevant and easily available source of somatic stem cells for generating human peptidergic nociceptive neurons without the need for genetic manipulation and cell purification. As no analgesics exist that specifically target TRPV1, a ready supply of high-quality human peptidergic nociceptive sensory neurons could open the way for new approaches, in a biologically relevant cellular context, to drug discovery and patient-specific disease modelling that is aimed at pain control, and as such is highly desirable.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Multipotentes/metabolismo , Crista Neural/metabolismo , Nociceptores/metabolismo , Transdução de Sinais , Humanos , Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Nociceptores/citologia
14.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1213-R1222, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784684

RESUMO

The epithelial Na+-coupled phosphate cotransporter family Slc34a (NaPi-II) is well conserved in vertebrates and plays an essential role in maintaining whole body levels of inorganic phosphate (Pi). A three-dimensional model of the transport protein has recently been proposed with defined substrate coordination sites. Zebrafish express two NaPi-II isoforms with high sequence identity but a 10-fold different apparent Km for Pi ([Formula: see text]). We took advantage of the two zebrafish isoforms to investigate the contribution of specific amino acids to Pi coordination and transport. Mutations were introduced to gradually transform the low-affinity isoform into a high-affinity transporter. The constructs were expressed in Xenopus laevis oocytes and functionally characterized. Becaue the cotransport of Pi and Na involves multiple steps that could all influence [Formula: see text], we performed a detailed functional analysis to characterize the impact of the mutations on particular steps of the transport cycle. We used varying concentrations of the substrates Pi and its slightly larger analog, arsenate, as well as the cosubstrate, Na+ Moreover, electrogenic kinetics were performed to assess intramolecular movements of the transporter. All of the mutations were found to affect multiple transport steps, which suggested that the altered amino acids induced subtle structural changes rather than coordinating Pi directly. The likely positions of the critical residues were mapped to the model of human Slc34a, and their localization in relation to the proposed substrate binding pockets concurs well with the observed functional data.


Assuntos
Aminoácidos/química , Fosfatos/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/ultraestrutura , Sódio/química , Proteínas de Peixe-Zebra/química , Animais , Sítios de Ligação , Transporte Biológico Ativo , Humanos , Modelos Químicos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Especificidade da Espécie , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/ultraestrutura
15.
Sci Rep ; 6: 26013, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27181107

RESUMO

CLARITY enables immunofluorescent labelling and imaging of large volumes of tissue to provide a better insight into the three dimensional relationship between cellular morphology and spatial interactions between different cell types. In the current study, we optimise passive CLARITY and immunofluorescent labelling of neurons and mitochondrial proteins in mouse and human brain tissues to gain further insights into mechanisms of neurodegeneration occurring in mitochondrial disease. This is the first study to utilise human cerebellum fixed in paraformaldehyde and cryoprotected in conjunction with formalin-fixed tissues opening up further avenues for use of archived tissue. We optimised hydrogel-embedding and passive clearance of lipids from both mouse (n = 5) and human (n = 9) cerebellum as well as developing an immunofluorescent protocol that consistently labels different neuronal domains as well as blood vessels. In addition to visualising large structures, we were able to visualise mitochondrial proteins in passively cleared tissues to reveal respiratory chain deficiency associated with mitochondrial disease. We also demonstrate multiple use of tissues by stripping antibodies and re-probing the cerebellum. This technique allows interrogation of large volumes intact brain samples for better understanding of the complex pathological changes taking place in mitochondrial disease.


Assuntos
Vasos Sanguíneos/metabolismo , Cerebelo/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fixação de Tecidos/métodos , Idoso , Animais , Vasos Sanguíneos/patologia , Cerebelo/patologia , Criopreservação , Imunofluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Neurônios/ultraestrutura , Coloração e Rotulagem
16.
Neuropathol Appl Neurobiol ; 42(5): 477-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26337858

RESUMO

AIMS: Cerebellar ataxia is common in patients with mitochondrial disease, and despite previous neuropathological investigations demonstrating vulnerability of the olivocerebellar pathway in patients with mitochondrial disease, the exact neurodegenerative mechanisms are still not clear. We use quantitative quadruple immunofluorescence to enable precise quantification of mitochondrial respiratory chain protein expression in Purkinje cell bodies and their synaptic terminals in the dentate nucleus. METHODS: We investigated NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 protein expression in 12 clinically and genetically defined patients with mitochondrial disease and ataxia and 10 age-matched controls. Molecular genetic analysis was performed to determine heteroplasmy levels of mutated mitochondrial DNA in Purkinje cell bodies and inhibitory synapses. RESULTS: Our data reveal that complex I deficiency is present in both Purkinje cell bodies and their inhibitory synapses which surround dentate nucleus neurons. Inhibitory synapses are fewer and enlarged in patients which could represent a compensatory mechanism. Mitochondrial DNA heteroplasmy demonstrated similarly high levels of mutated mitochondrial DNA in cell bodies and synapses. CONCLUSIONS: This is the first study to use a validated quantitative immunofluorescence technique to determine complex I expression in neurons and presynaptic terminals, evaluating the distribution of respiratory chain deficiencies and assessing the degree of morphological abnormalities affecting synapses. Respiratory chain deficiencies detected in Purkinje cell bodies and their synapses and structural synaptic changes are likely to contribute to altered cerebellar circuitry and progression of ataxia.


Assuntos
Ataxia Cerebelar/etiologia , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/complicações , Células de Purkinje/enzimologia , Sinapses/enzimologia , Adulto , Ataxia Cerebelar/enzimologia , Ataxia Cerebelar/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/patologia , Células de Purkinje/patologia , Sinapses/patologia , Adulto Jovem
17.
Neuropathol Appl Neurobiol ; 42(2): 180-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25786813

RESUMO

AIMS: Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ-aminobutyric acid (GABA)-ergic interneurones are particularly susceptible to respiratory chain dysfunction. In this neuropathological study, we assess the impact of mitochondrial DNA defects on inhibitory interneurones in patients with mitochondrial disease. METHODS: Histochemical, immunohistochemical and immunofluorescent assays were performed on post-mortem brain tissue from 10 patients and 10 age-matched control individuals. We applied a quantitative immunofluorescent method to interrogate complex I and IV protein expression in mitochondria within GABAergic interneurone populations in the frontal, temporal and occipital cortices. We also evaluated the density of inhibitory interneurones in serial sections to determine if cell loss was occurring. RESULTS: We observed significant, global reductions in complex I expression within GABAergic interneurones in frontal, temporal and occipital cortices in the majority of patients. While complex IV expression is more variable, there is reduced expression in patients harbouring m.8344A>G point mutations and POLG mutations. In addition to the severe respiratory chain deficiencies observed in remaining interneurones, quantification of GABAergic cell density showed a dramatic reduction in cell density suggesting interneurone loss. CONCLUSIONS: We propose that the combined loss of interneurones and severe respiratory deficiency in remaining interneurones contributes to impaired neuronal network oscillations and could underlie development of neurological deficits, such as cognitive impairment and epilepsy, in mitochondrial disease.


Assuntos
Encéfalo/fisiopatologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Neurônios GABAérgicos/patologia , Interneurônios/patologia , Doenças Mitocondriais/fisiopatologia , Adulto , Idoso , Autopsia , Feminino , Imunofluorescência , Neurônios GABAérgicos/metabolismo , Humanos , Imuno-Histoquímica , Interneurônios/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Biochem Soc Trans ; 41(1): 79-83, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356262

RESUMO

Ras GTPases are important regulators of pathways controlling proliferation, differentiation and transformation. Three ubiquitously expressed almost identical Ras genes are not functionally redundant; this has been attributed to their distinctive trafficking and localization profiles. A palmitoylation cycle controls the correct compartmentalization of H-Ras and N-Ras. We review recent data that reveal how this cycle can be regulated by membrane organization to influence the spatiotemporal signalling of Ras.


Assuntos
Lipoilação , Ácido Palmítico/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Transporte Proteico , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas ras/química , Proteínas ras/genética
19.
FEBS J ; 276(7): 1800-16, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19243429

RESUMO

Ca(2+) regulates a multitude of cellular processes and does so by partitioning its actions in space and time. In this review, we discuss how Ca(2+) responses are constructed from small quantal (elementary) events that have the potential to propagate to produce large pan-cellular responses. We review how Ca(2+) is compartmentalized both physically and functionally, and describe how each organelle has its own distinct Ca(2+)-handling properties. We explain how coordination of the movement of Ca(2+) between organelles is used to shape and hone Ca(2+) signals. Finally, we provide a number of specific examples of where compartmentation and localization of Ca(2+) are crucial to cell function.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Transdução de Sinais , Animais , Compartimento Celular/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos
20.
J Cell Sci ; 121(Pt 4): 421-7, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18211960

RESUMO

RAS isoforms have been proposed to exhibit differing biological outputs due to differences in their relative occupancy of cellular organelles and signalling microdomains. The membrane binding and targeting motifs of RAS are encoded by the C-terminal hypervariable region (HVR), and the precise localisation depends upon interactions between the HVR and the host membrane. Classic studies revealed that all RAS proteins rely on farnesylation and either palmitoylation or a polybasic stretch for stable binding to membranes. We now show that, for N-RAS and Ki-RAS4A, mono-palmitoylation and farnesylation are not sufficient for specifying stable cell-surface localisation. A third motif that is present within the linker domain of all palmitoylated RAS HVRs is necessary for stabilising localisation to the plasma membrane. This motif comprises acidic residues that stabilise palmitoylation and basic amino acids that are likely to interact electrostatically with acidic phospholipids enriched at the cell surface. Importantly, altered localisation is achieved without changes in palmitoylation status. Our data provide a mechanism for distinct HVR membrane interactions controlling subcellular distribution. In the context of the full-length RAS proteins, this is likely to be of crucial importance for controlling signalling output and engagement with different pools of effectors.


Assuntos
Membrana Celular/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lipoilação , Microscopia de Fluorescência , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilação de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA