Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Immunother ; 46(4): 132-144, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36826388

RESUMO

Adoptive cell therapy with T cells expressing affinity-enhanced T-cell receptors (TCRs) is a promising treatment for solid tumors. Efforts are ongoing to further engineer these T cells to increase the depth and durability of clinical responses and broaden efficacy toward additional indications. In the present study, we investigated one such approach: T cells were transduced with a lentiviral vector to coexpress an affinity-enhanced HLA class I-restricted TCR directed against MAGE-A4 alongside a CD8α coreceptor. We hypothesized that this approach would enhance CD4 + T-cell helper and effector functions, possibly leading to a more potent antitumor response. Activation of transduced CD4 + T cells was measured by detecting CD40 ligand expression on the surface and cytokine and chemokine secretion from CD4 + T cells and dendritic cells cultured with melanoma-associated antigen A4 + tumor cells. In addition, T-cell cytotoxic activity against 3-dimensional tumor spheroids was measured. Our data demonstrated that CD4 + T cells coexpressing the TCR and CD8α coreceptor displayed enhanced responses, including CD40 ligand expression, interferon-gamma secretion, and cytotoxic activity, along with improved dendritic cell activation. Therefore, our study supports the addition of the CD8α coreceptor to HLA class I-restricted TCR-engineered T cells to enhance CD4 + T-cell functions, which may potentially improve the depth and durability of antitumor responses in patients.


Assuntos
Antineoplásicos , Ligante de CD40 , Humanos , Linfócitos T CD4-Positivos , Linfócitos T Auxiliares-Indutores , Receptores de Antígenos de Linfócitos T/metabolismo
2.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577500

RESUMO

Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public-private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Síndrome da Liberação de Citocina , Humanos , Imunoterapia Adotiva/efeitos adversos , Camundongos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T
3.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577501

RESUMO

Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T
4.
J Clin Invest ; 128(4): 1569-1580, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29528337

RESUMO

Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic "mimics" using subunits that do not exist in the natural world. We developed a platform based on D-amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus-specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.


Assuntos
Materiais Biomiméticos , Vírus da Influenza A/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Biblioteca de Peptídeos , Vacinação , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Cultivadas , Humanos , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle
5.
J Biol Chem ; 292(3): 802-813, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27903649

RESUMO

T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8+ T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection.


Assuntos
Linfócitos T CD8-Positivos , Peptídeos , Receptores de Antígenos de Linfócitos T , Telomerase , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Reações Cruzadas , Humanos , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Telomerase/química , Telomerase/imunologia
6.
Nat Commun ; 7: 12506, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27527800

RESUMO

Mucosal-associated invariant T (MAIT) cells are thought to detect microbial antigens presented by the HLA-Ib molecule MR1 through the exclusive use of a TRAV1-2-containing TCRα. Here we use MR1 tetramer staining and ex vivo analysis with mycobacteria-infected MR1-deficient cells to demonstrate the presence of functional human MR1-restricted T cells that lack TRAV1-2. We characterize an MR1-restricted clone that expresses the TRAV12-2 TCRα, which lacks residues previously shown to be critical for MR1-antigen recognition. In contrast to TRAV1-2(+) MAIT cells, this TRAV12-2-expressing clone displays a distinct pattern of microbial recognition by detecting infection with the riboflavin auxotroph Streptococcus pyogenes. As known MAIT antigens are derived from riboflavin metabolites, this suggests that TRAV12-2(+) clone recognizes unique antigens. Thus, MR1-restricted T cells can discriminate between microbes in a TCR-dependent manner. We postulate that additional MR1-restricted T-cell subsets may play a unique role in defence against infection by broadening the recognition of microbial metabolites.


Assuntos
Antígenos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Riboflavina/imunologia , Streptococcus pyogenes/imunologia , Subpopulações de Linfócitos T/imunologia , Células A549 , Apresentação de Antígeno/imunologia , Linhagem Celular , Células Cultivadas , Antígenos de Histocompatibilidade Classe I/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Riboflavina/metabolismo , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Subpopulações de Linfócitos T/metabolismo
7.
J Immunol ; 197(3): 971-82, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307560

RESUMO

The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells.


Assuntos
Apresentação de Antígeno/imunologia , Edição de Genes/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T/imunologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citometria de Fluxo , Vetores Genéticos , Humanos , Lentivirus , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Subpopulações de Linfócitos T/imunologia
8.
Front Immunol ; 5: 31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24550915
9.
Front Immunol ; 4: 250, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24046768

RESUMO

Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles.

10.
Front Immunol ; 4: 221, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935598

RESUMO

Recent early stage clinical trials evaluating the adoptive transfer of patient CD8(+) T-cells re-directed with antigen receptors recognizing tumors have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumor-specific T-cells with therapies that increase their anti-tumor capacity is viewed as a promising strategy to improve treatment outcome. The ex vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell-intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumor immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

11.
Immunology ; 138(4): 402-10, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23278551

RESUMO

Multiple endogenous mechanisms that regulate immune and inflammatory processes contribute to the maintenance of peripheral tolerance and prevent chronic inflammation in mammals. Yet pathogens and tumours are able to exploit these homeostatic pathways to foster immunosuppressive microenvironments and evade immune surveillance. The release of adenosine in the extracellular space contributes to these phenomena by exerting a broad range of immunomodulatory effects. Here we document the influence of adenosine receptor triggering on human dendritic cell differentiation and functions. We show that the expression of several immunomodulatory proteins and myeloid/monocytic lineage markers was affected by adenosine receptors and the cAMP pathway. These changes were reminiscent of the phenotype associated with tolerogenic dendritic cells and, functionally, translated into a defective capacity to prime CD8(+) T-cells with a common tumour antigen in vitro. These results establish a novel mechanism by which adenosine hampers CD8(+) T-cell immunity via dendritic cells that may contribute to peripheral tolerance as well as to the establishment of immunosuppressive microenvironments relevant to tumour biology.


Assuntos
Adenosina/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , AMP Cíclico/farmacologia , Células Dendríticas/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Adenosina/imunologia , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Expressão Gênica/efeitos dos fármacos , Humanos , Fatores Imunológicos/imunologia , Monócitos/citologia , Monócitos/imunologia , Tolerância Periférica/efeitos dos fármacos , Fenótipo , Receptores Purinérgicos P1/imunologia , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Immunology ; 137(2): 139-48, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22804746

RESUMO

CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/química , Reações Cruzadas , Humanos , Ligantes , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/química
13.
J Neuroimmunol ; 240-241: 52-7, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22035961

RESUMO

Cladribine (2-chloro-2'-deoxyadenosine) is a purine nucleoside analogue (PNA) which causes targeted and sustained reduction of peripheral lymphocyte counts. Cladribine tablets produced significant treatment benefit for patients with relapsing-remitting multiple sclerosis in the phase 3 CLARITY study. In addition to the well-characterised cell-specific phosphorylation of PNAs responsible for lymphocyte reduction, the mode of action of cladribine may encompass distinct activities contributing to its overall effects on the immune system. Here we demonstrate that clinically relevant concentrations of cladribine also inhibit cytokine secretion by human peripheral blood T cells in vitro through mechanisms independent of the induction of lymphocyte death.


Assuntos
Cladribina/uso terapêutico , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Desoxicitidina Quinase/metabolismo , Imunomodulação/efeitos dos fármacos , Imunossupressores/uso terapêutico , Linfócitos T/enzimologia , Linfócitos T/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Linfócitos T/metabolismo
14.
J Leukoc Biol ; 90(6): 1089-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21954283

RESUMO

Short peptide fragments generated by intracellular protein cleavage are presented on the surface of most nucleated cells bound to highly polymorphic MHCI molecules. These pMHCI complexes constitute an interface that allows the immune system to identify and eradicate anomalous cells, such as those that harbor infectious agents, through the activation of CTLs. Molecular recognition of pMHCI complexes is mediated primarily by clonally distributed TCRs expressed on the surface of CTLs. The coreceptor CD8 contributes to this antigen-recognition process by binding to a largely invariant region of the MHCI molecule and by promoting intracellular signaling, the effects of which serve to enhance TCR stimuli triggered by cognate ligands. Recent investigations have shed light on the role of CD8 in the activation of MHCI-restricted, antigen-experienced T cells and in the processes of T cell selection and lineage commitment in the thymus. Here, we review these data and discuss their implications for the development of potential therapeutic strategies that selectively target pathogenic CTL responses erroneously directed against self-derived antigens.


Assuntos
Antígenos CD8/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Tolerância Imunológica , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD8/metabolismo , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/metabolismo
15.
J Immunol ; 185(8): 4625-32, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844204

RESUMO

Estimates of human αß TCR diversity suggest that there are <10(8) different Ag receptors in the naive T cell pool, a number that is dwarfed by the potential number of different antigenic peptide-MHC (pMHC) molecules that could be encountered. Consequently, an extremely high degree of cross-reactivity is essential for effective T cell immunity. Ag recognition by T cells is unique in that it involves a coreceptor that binds at a site distinct from the TCR to facilitate productive engagement of the pMHC. In this study, we show that the CD8 coreceptor controls T cell cross-reactivity for pMHCI Ags, thereby ensuring that the peripheral T cell repertoire is optimally poised to negotiate the competing demands of responsiveness in the face of danger and quiescence in the presence of self.


Assuntos
Apresentação de Antígeno , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Linhagem Celular , Separação Celular , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia
16.
J Immunol ; 184(7): 3357-66, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20190139

RESUMO

CD8(+) CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8 interaction by approximately 15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Separação Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
17.
Nat Med ; 14(12): 1390-5, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18997777

RESUMO

HIV's considerable capacity to vary its HLA-I-restricted peptide antigens allows it to escape from host cytotoxic T lymphocytes (CTLs). Nevertheless, therapeutics able to target HLA-I-associated antigens, with specificity for the spectrum of preferred CTL escape mutants, could prove effective. Here we use phage display to isolate and enhance a T-cell antigen receptor (TCR) originating from a CTL line derived from an infected person and specific for the immunodominant HLA-A(*)02-restricted, HIVgag-specific peptide SLYNTVATL (SL9). High-affinity (K(D) < 400 pM) TCRs were produced that bound with a half-life in excess of 2.5 h, retained specificity, targeted HIV-infected cells and recognized all common escape variants of this epitope. CD8 T cells transduced with this supraphysiologic TCR produced a greater range of soluble factors and more interleukin-2 than those transduced with natural SL9-specific TCR, and they effectively controlled wild-type and mutant strains of HIV at effector-to-target ratios that could be achieved by T-cell therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Células Cultivadas , Produtos do Gene gag/química , Produtos do Gene gag/imunologia , Humanos , Mutação/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Ligação Proteica , Solubilidade
18.
J Theor Biol ; 249(2): 395-408, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17869274

RESUMO

The CD8 coreceptor modulates the interaction between the T cell antigen receptor (TCR) and peptide-major histocompatibility class I (pMHCI). We present evidence that CD8 not only modifies the affinity of cognate TCR/pMHCI binding by altering both the association rate and the dissociation rate of the TCR/pMHCI interaction, but modulates the sensitivity (triggering threshold) of the TCR as well, by recruiting TCR/pMHCI complexes to membrane microdomains at a rate which depends on the affinity of MHCI/CD8 binding. Mathematical analysis of these modulatory effects indicates that a T cell can alter its functional avidity for its agonists by regulating CD8 expression, and can rearrange the relative potencies of each of its potential agonists. Thus we propose that a T cell can specifically increase its functional avidity for one agonist, while decreasing its functional avidity for other potential ligands. This focussing mechanism means that TCR degeneracy is inherently dynamic, allowing each TCR clonotype to have a wide range of agonists while avoiding autorecognition. The functional diversity of the TCR repertoire would therefore be greatly augmented by coreceptor-mediated ligand focussing.


Assuntos
Antígenos CD8/imunologia , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T/metabolismo , Reações Cruzadas , Relação Dose-Resposta Imunológica , Antígeno HLA-A2/metabolismo , Humanos , Imunidade Celular , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia
19.
Mol Cancer Ther ; 6(7): 2081-91, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17620437

RESUMO

Tumor-associated human telomerase reverse transcriptase (hTERT) is expressed in >85% of human tumors but not in most normal cells. As a result, this antigen has received considerable attention from those interested in cancer immunotherapy. Specifically, there has been strong interest in MHC class I-associated peptides derived from hTERT because these are expressed on the cell surface and thus may enable the targeting of tumor cells. Much of this interest has focused on peptide 540-548, ILAKFLHWL, which was predicted to exhibit the strongest binding to the common HLA A*0201 presenting molecule. The hTERT(540-548) peptide is currently being assessed in therapeutic vaccination trials; however, there is controversy surrounding whether it is naturally processed and presented on the surface of neoplastic cells. Here, we generate two highly sensitive reagents to assess the presentation of hTERT(540-548) on tumor cells: (a) a CD8(+) CTL clone, and (b) a recombinant T-cell receptor (TCR) that binds with picomolar affinity and a half-life exceeding 14 h. This TCR enables the identification of individual HLA A2-hTERT(540-548) complexes on the cell surface. The use of both this TCR and the highly antigen-sensitive CTL clone shows that the hTERT(540-548) peptide cannot be detected on the surface of tumor cells, indicating that this peptide is not a naturally presented epitope. We propose that, in future, rigorous methods must be applied for the validation of peptide epitopes used for clinical applications.


Assuntos
Antígenos HLA-A/imunologia , Fragmentos de Peptídeos/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Telomerase/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Separação Celular , Células Clonais , Ensaio de Imunoadsorção Enzimática , Epitopos , Antígeno HLA-A2 , Humanos , Interferon gama/farmacologia , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Inibidores de Proteassoma , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/isolamento & purificação , Linfócitos T Citotóxicos/efeitos dos fármacos , Transfecção
20.
J Biol Chem ; 282(33): 23799-810, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17540778

RESUMO

T cells have evolved a unique system of ligand recognition involving an antigen T cell receptor (TCR) and a coreceptor that integrate stimuli provided by the engagement of peptide-major histocompatibility complex (pMHC) antigens. Here, we use altered pMHC class I (pMHCI) molecules with impaired CD8 binding (CD8-null) to quantify the contribution of coreceptor extracellular binding to (i) the engagement of soluble tetrameric pMHCI molecules, (ii) the kinetics of TCR/pMHCI interactions on live cytotoxic T lymphocytes (CTLs), and (iii) the activation of CTLs by cell-surface antigenic determinants. Our data indicate that the CD8 coreceptor substantially enhances binding efficiency at suboptimal TCR/pMHCI affinities through effects on both association and dissociation rates. Interestingly, coreceptor requirements for efficient tetramer labeling of CTLs or for CTL activation by determinants displayed on the cell surface operated in different TCR/pMHCI affinity ranges. Wild-type and CD8-null pMHCI tetramers required monomeric affinities for cognate TCRs of KD < approximately 80 microM and approximately 35 microM, respectively, to label human CTLs at 37 degrees C. In contrast, activation by cellular pMHCI molecules was strictly dependent on CD8 binding only for TCR/pMHCI interactions with KD values >200 microM. Altogether, our data provide information on the binding interplay between CD8 and the TCR and support a model of CTL activation in which the extent of coreceptor dependence is inversely correlated to TCR/pMHCI affinity. In addition, the results reported here define the range of TCR/pMHCI affinities required for the detection of antigen-specific CTLs by flow cytometry.


Assuntos
Antígenos CD8/metabolismo , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Cinética , Nematoides , Ligação Proteica , Spiruroidea/imunologia , Linfócitos T Citotóxicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA