Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cardiovasc Res ; 118(2): 357-371, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34358290

RESUMO

Regular aerobic exercise (RAEX) elicits several positive adaptations in all organs and tissues of the body, culminating in improved health and well-being. Indeed, in over half a century, many studies have shown the benefit of RAEX on cardiovascular outcome in terms of morbidity and mortality. RAEX elicits a wide range of functional and structural adaptations in the heart and its coronary circulation, all of which are to maintain optimal myocardial oxygen and nutritional supply during increased demand. Although there is no evidence suggesting that oxidative metabolism is limited by coronary blood flow (CBF) rate in the normal heart even during maximal exercise, increased CBF and capillary exchange capacities have been reported. Adaptations of coronary macro- and microvessels include outward remodelling of epicardial coronary arteries, increased coronary arteriolar size and density, and increased capillary surface area. In addition, there are adjustments in the neural and endothelial regulation of coronary macrovascular tone. Similarly, there are several adaptations at the level of microcirculation, including enhanced (such as nitric oxide mediated) smooth muscle-dependent pressure-induced myogenic constriction and upregulated endothelium-dependent/shear-stress-induced dilation, increasing the range of diameter change. Alterations in the signalling interaction between coronary vessels and cardiac metabolism have also been described. At the molecular and cellular level, ion channels are key players in the local coronary vascular adaptations to RAEX, with enhanced activation of influx of Ca2+ contributing to the increased myogenic tone (via voltage-gated Ca2+ channels) as well as the enhanced endothelium-dependent dilation (via TRPV4 channels). Finally, RAEX elicits a number of beneficial effects on several haemorheological variables that may further improve CBF and myocardial oxygen delivery and nutrient exchange in the microcirculation by stabilizing and extending the range and further optimizing the regulation of myocardial blood flow during exercise. These adaptations also act to prevent and/or delay the development of coronary and cardiac diseases.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Circulação Coronária , Vasos Coronários/fisiopatologia , Exercício Físico , Estilo de Vida Saudável , Hemodinâmica , Microcirculação , Microvasos/fisiopatologia , Adaptação Fisiológica , Animais , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/metabolismo , Fatores de Risco de Doenças Cardíacas , Humanos , Microvasos/diagnóstico por imagem , Microvasos/metabolismo , Prognóstico , Fatores de Proteção , Medição de Risco , Comportamento de Redução do Risco
2.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34027891

RESUMO

Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer's disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aß40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.


Assuntos
Amiloide/metabolismo , Transtornos Cerebrovasculares , Insuficiência Cardíaca , Doenças Metabólicas , Animais , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Transdução de Sinais , Suínos
3.
J Pathol ; 254(5): 589-605, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33999411

RESUMO

Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by dystrophin deficiency. Vascular dysfunction has been suggested as an underlying pathogenic mechanism in DMD. However, this has not been thoroughly studied in a large animal model. Here we investigated structural and functional changes in the vascular smooth muscle and endothelium of the canine DMD model. The expression of dystrophin and endothelial nitric oxide synthase (eNOS), neuronal NOS (nNOS), and the structure and function of the femoral artery from 15 normal and 16 affected adult dogs were evaluated. Full-length dystrophin was detected in the endothelium and smooth muscle in normal but not affected dog arteries. Normal arteries lacked nNOS but expressed eNOS in the endothelium. NOS activity and eNOS expression were reduced in the endothelium of dystrophic dogs. Dystrophin deficiency resulted in structural remodeling of the artery. In affected dogs, the maximum tension induced by vasoconstrictor phenylephrine and endothelin-1 was significantly reduced. In addition, acetylcholine-mediated vasorelaxation was significantly impaired, whereas exogenous nitric oxide-induced vasorelaxation was significantly enhanced. Our results suggest that dystrophin plays a crucial role in maintaining the structure and function of vascular endothelium and smooth muscle in large mammals. Vascular defects may contribute to DMD pathogenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Distrofina/deficiência , Endotélio Vascular/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Modelos Animais de Doenças , Cães
4.
Am J Physiol Endocrinol Metab ; 317(4): E605-E616, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361543

RESUMO

Dysregulated mitochondrial quality control leads to mitochondrial functional impairments that are central to the development and progression of hepatic steatosis to nonalcoholic steatohepatitis (NASH). Here, we identify hepatocellular localized endothelial nitric oxide synthase (eNOS) as a novel master regulator of mitochondrial quality control. Mice lacking eNOS were more susceptible to Western diet-induced hepatic inflammation and fibrosis in conjunction with decreased markers of mitochondrial biogenesis and turnover. The hepatocyte-specific influence was verified via magnetic activated cell sorting purified primary hepatocytes and in vitro siRNA-induced knockdown of eNOS. Hepatic mitochondria from eNOS knockout mice revealed decreased markers of mitochondrial biogenesis (PPARγ coactivator-1α, mitochondrial transcription factor A) and autophagy/mitophagy [BCL-2-interacting protein-3 (BNIP3), 1A/1B light chain 3B (LC3)], suggesting decreased mitochondrial turnover rate. eNOS knockout in primary hepatocytes exhibited reduced fatty acid oxidation capacity and were unable to mount a normal BNIP3 response to a mitophagic challenge compared with wild-type mice. Finally, we demonstrate that eNOS is required in primary hepatocytes to induce activation of the stress-responsive transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). Thus, our data demonstrate that eNOS is an important regulator of hepatic mitochondrial content and function and NASH susceptibility.


Assuntos
Dieta Ocidental/efeitos adversos , Mitocôndrias Hepáticas/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Autofagia/genética , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Mitofagia , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , Cultura Primária de Células , RNA Interferente Pequeno/farmacologia
5.
Exerc Sport Sci Rev ; 47(2): 66-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883470

RESUMO

We present the hypothesis that exercise-induced hyperemia, perhaps through vascular shear stress, represents an important factor responsible for the effects of physical activity (PA) on vascular insulin sensitivity. Specifically, we postulate PA involving the greatest amount of skeletal muscle mass and the greatest central neural recruitment maximizes perfusion and consequently enhances vascular insulin sensitivity in the skeletal muscle and brain.


Assuntos
Encéfalo/fisiologia , Exercício Físico , Resistência à Insulina , Músculo Esquelético/fisiologia , Endotélio Vascular/fisiologia , Humanos , Estresse Mecânico
6.
Microcirculation ; 26(6): e12539, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821858

RESUMO

OBJECTIVE: Swine with familial hypercholesterolemia (FH) exhibit attenuated exercise-induced systemic vasodilation that is restored by phosphodiesterase 5 (PDE5) inhibition. Whether the impacts of FH and PDE5 inhibition to impair and restore exercise-induced vasodilation, respectively, results from tissue-specific or generalized effects remains unclear. Thus, we hypothesized that FH induces generalized impairment of skeletal muscle vasodilation that would be alleviated by PDE5 inhibition. METHODS: Systemic vascular responses to exercise were assessed in chronically instrumented normal and FH swine before and after PDE5 inhibition with EMD360527. Skeletal muscle and organ blood flows and conductances were determined via the microsphere technique. RESULTS: As previously reported, vs normal swine, FH swine have pronounced elevation of total cholesterol and impaired exercise-induced vasodilation that is restored by PDE5 inhibition. Blood flows to several, not all, skeletal muscle vascular beds were severely impaired by FH associated with reduced blood flow to many visceral organs. PDE5 inhibition differentially impacted skeletal muscle and organ blood flows in normal and FH swine. CONCLUSIONS: These data indicate that FH induces regional, not generalized, vasomotor dysfunction and that FH and normal swine exhibit unique tissue blood flow responses to PDE5 inhibition thereby adding to accumulating evidence of vascular bed-specific dysfunction in co-morbid conditions.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hiperlipoproteinemia Tipo II , Músculo Esquelético , Inibidores da Fosfodiesterase 5/farmacologia , Condicionamento Físico Animal , Vasodilatação/efeitos dos fármacos , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Hiperlipoproteinemia Tipo II/enzimologia , Hiperlipoproteinemia Tipo II/patologia , Hiperlipoproteinemia Tipo II/fisiopatologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Suínos
7.
J Appl Physiol (1985) ; 125(1): 86-96, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596016

RESUMO

Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BKCa channel-mediated function. A translational large-animal model with cardiac features of HFpEF was used to test this hypothesis. Specifically, male Yucatan miniswine were divided into three groups ( n = 7/group): control (CON), aortic banded (AB)-heart failure (HF), and AB-interval trained (HF-IT). Coronary blood flow, vascular conductance, and vasodilatory capacity were measured after administration of the BKCa channel agonist NS-1619 both in vivo and in vitro in the left anterior descending coronary artery and isolated coronary arterioles, respectively. Skeletal muscle citrate synthase activity was decreased and left ventricular brain natriuretic peptide levels increased in HF vs. CON and HF-IT animals. A parallel decrease in NS-1619-dependent coronary vasodilatory reserve in vivo and isolated coronary arteriole vasodilatory responsiveness in vitro were observed in HF animals compared with CON, which was prevented in the HF-IT group. Although exercise training prevented BKCa channel-mediated coronary vascular dysfunction, it did not change BKCa channel α-subunit mRNA, protein, or cellular location (i.e., membrane vs. cytoplasm). In conclusion, these results demonstrate the viability of chronic interval exercise training as a therapy for central and peripheral adaptations of experimental heart failure, including BKCa channel-mediated coronary vascular dysfunction. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show that chronic interval exercise training can prevent BKCa channel-mediated coronary vascular dysfunction in a translational swine model of chronic pressure overload-induced heart failure with relevance to human HFpEF.


Assuntos
Aorta/fisiopatologia , Vasos Coronários/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/fisiopatologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Condicionamento Físico Animal/fisiologia , Porco Miniatura/fisiologia , Animais , Aorta/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Vasos Coronários/metabolismo , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Hemodinâmica/fisiologia , Masculino , Volume Sistólico/fisiologia , Suínos , Porco Miniatura/metabolismo , Função Ventricular Esquerda/fisiologia
8.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R252-R264, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141949

RESUMO

Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cß (PKCß). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCß inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.


Assuntos
Resistência à Insulina , Insulina/sangue , Microvasos/metabolismo , Músculo Esquelético/irrigação sanguínea , Obesidade Infantil/metabolismo , Córtex Pré-Frontal/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Obesidade Infantil/fisiopatologia , Fosforilação , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Porco Miniatura , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
9.
J Am Heart Assoc ; 6(11)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089345

RESUMO

BACKGROUND: Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. METHODS AND RESULTS: Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups (P<0.05), with significant impairments in the AB-OVX group (P<0.05). Resting carotid artery ß stiffness and vascular resistance during central hypovolemia were increased in the AB-OVX group (P<0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups (P<0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB-OVX group (P<0.05), and vasodilation to the Ca2+-activated potassium channel α-subunit agonist NS-1619 was impaired in both AB groups (P<0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca2+-activated potassium channel α-subunit protein was increased in AB groups (P<0.05). CONCLUSIONS: Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca2+-activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones.


Assuntos
Aorta/cirurgia , Comportamento Animal , Artérias Cerebrais/metabolismo , Transtornos Cerebrovasculares/metabolismo , Transtornos Cognitivos/metabolismo , Cognição , Hormônios Esteroides Gonadais/deficiência , Insuficiência Cardíaca/metabolismo , Neuropeptídeo Y/metabolismo , Óxido Nítrico/metabolismo , Ovariectomia , Pia-Máter/irrigação sanguínea , Canais de Potássio Cálcio-Ativados/metabolismo , Animais , Aorta/fisiopatologia , Pressão Arterial , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/psicologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Ligadura , Transdução de Sinais , Memória Espacial , Suínos , Porco Miniatura , Fatores de Tempo , Vasoconstrição , Vasodilatação
10.
Physiol Rev ; 97(2): 495-528, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28151424

RESUMO

On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.


Assuntos
Adaptação Fisiológica/fisiologia , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/metabolismo , Exercício Físico/fisiologia , Hemodinâmica/fisiologia , Animais , Humanos , Estresse Mecânico
11.
J Appl Physiol (1985) ; 122(4): 1040-1050, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183819

RESUMO

This study tested the hypotheses that obesity-induced decrements in insulin-stimulated cerebrovascular vasodilation would be normalized with acute endothelin-1a receptor antagonism and that treatment with a physical activity intervention restores vasoreactivity to insulin through augmented nitric oxide synthase (NOS)-dependent dilation. Otsuka Long-Evans Tokushima Fatty rats were divided into the following groups: 20 wk old food controlled (CON-20); 20 wk old free food access (model of obesity, OB-20); 40 wk old food controlled (CON-40); 40 wk old free food access (OB-40); and 40 wk old free food access+RUN (RUN-40; wheel-running access from 20 to 40 wk). Rats underwent Barnes maze testing and a euglycemic hyperinsulinemic clamp (EHC). In the 40-wk cohort, cerebellum and hippocampus blood flow (BF) were examined (microsphere infusion). Vasomotor responses (pressurized myography) to insulin were assessed in untreated, endothelin-1a receptor antagonism, and NOS inhibition conditions in posterior cerebral arteries. Insulin-stimulated vasodilation was attenuated in the OB vs. CON and RUN groups (P ≤ 0.04). Dilation to insulin was normalized with endothelin-1a receptor antagonism in the OB groups (between groups, P ≥ 0.56), and insulin-stimulated NOS-mediated dilation was greater in the RUN-40 vs. OB-40 group (P < 0.01). At 40 wk of age, cerebellum BF decreased during EHC in the OB-40 group (P = 0.02) but not CON or RUN groups (P ≥ 0.36). Barnes maze testing revealed increased entry errors and latencies in the RUN-40 vs. CON and OB groups (P < 0.01). These findings indicate that obesity-induced impairments in vasoreactivity to insulin involve increased endothelin-1 and decreased nitric oxide signaling. Chronic spontaneous physical activity, initiated after disease onset, reversed impaired vasodilation to insulin and decreased Barnes maze performance, possibly because of increased exploratory behavior.NEW & NOTEWORTHY The new and noteworthy findings are that 1) in rodents, obesity-related deficits in insulin-mediated vasodilation are associated with increased influence of insulin-stimulated ET-1 and depressed influence of insulin-stimulated NOS and 2) a physical activity intervention, initiated after the onset of disease, restores insulin-mediated vasodilation, likely by normalizing insulin-stimulated ET-1 and NOS balance. These data demonstrate that the treatment effects of chronic exercise on insulin-mediated vasodilation extend beyond active skeletal muscle vasculature and include the cerebrovasculature.


Assuntos
Endotelina-1/metabolismo , Insulina/farmacologia , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Artéria Cerebral Posterior/metabolismo , Animais , Resistência à Insulina/fisiologia , Obesidade/terapia , Condicionamento Físico Animal/métodos , Artéria Cerebral Posterior/efeitos dos fármacos , Ratos , Ratos Endogâmicos OLETF , Resultado do Tratamento , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
12.
Exp Biol Med (Maywood) ; 242(6): 617-624, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28114814

RESUMO

We examined the effects of metformin, a commonly used antidiabetic drug, on gene expression in multiple arteries. Specifically, transcriptional profiles of feed arteries and second branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles as well as aortic endothelial scrapes were examined from obese insulin-resistant Otsuka Long-Evans Tokushima Fatty rats treated with ( n = 9) or without ( n = 10) metformin from 20 to 32 weeks of age. Metformin-treated rats exhibited a reduction in body weight, adiposity, and HbA1c ( P < 0.05). The greatest number of differentially expressed genes (FDR < 15%) between those treated with and without metformin was found in the red gastrocnemius 2a arterioles (93 genes), followed by the diaphragm 2a arterioles (62 genes), and soleus 2a arterioles (15 genes). We also found that two genes were differentially expressed in aortic endothelial cells (LETMD1 and HMGCS2, both downregulated), one gene in the gastrocnemius feed artery (BLNK, downregulated), and no genes in the soleus and diaphragm feed arteries and white gastrocnemius 2a arterioles. No single gene was altered by metformin across all vessels examined. This study provides evidence that metformin treatment produces distinct gene expression effects throughout the arterial tree in a rat model of obesity and insulin resistance. Genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action. These findings support the notion that vascular gene regulation in response to oral pharmacological therapy, such as metformin, is vessel specific. Impact statement This study provides evidence that metformin treatment produces artery-specific gene expression effects. The genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action.


Assuntos
Artérias/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Músculo Esquelético/irrigação sanguínea , Obesidade/metabolismo , Animais , Artérias/metabolismo , Resistência à Insulina , Masculino , Ratos , Ratos Long-Evans , Ratos Mutantes
13.
J Appl Physiol (1985) ; 122(3): 423-429, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909230

RESUMO

During cardiac surgery, specifically sternotomy, cranial hypoperfusion is linked to cerebral ischemia, increased risk of perioperative watershed stroke, and other neurocognitive complications. The purpose of this study was to retrospectively examine the effect of sex hormones in females and exercise prehabilitation in males on median sternotomy-induced changes in cranial perfusion in a large animal model of heart failure. Cranial blood flow (CBF) before and 10 and 60 min poststernotomy was analyzed in eight groups of Yucatan mini-swine: female control, aortic banded, ovariectomized, and ovariectomized + aortic banded; male control, aortic banded, aortic banded + continuous exercise trained, and aortic banded + interval exercise trained. A median sternotomy decreased cranial perfusion during surgery in all pigs (~24 ± 2% relative to baseline; P ≤ 0.05). CBF was 30 ± 7% lower across all time points in all females vs. all males (P ≤ 0.05) and sternotomy decreased cranial perfusion (P ≤ 0.05) independent of sex (females = 34 ± 3% and males = 14 ± 3%) and aortic banding (intact control = 31 ± 5% and intact aortic banded = 31 ± 4%). CBF recovery at 60 min tended to be better in females vs. males (relative to 10 min poststernotomy, females = 23 ± 13% vs. males = -1 ± 5%) and intact aortic banded vs. control pigs (relative to 10 min poststernotomy, aortic banded = 43 ± 20% vs. control = 6 ± 16%; P ≤ 0.05) at 60 min poststernotomy. Ovariectomy impaired CBF recovery during cranial reperfusion 60 min following sternotomy (relative to baseline, all intact females = -1 ± 9% vs. all ovariectomized females = -15 ± 4%; P ≤ 0.05). Chronic exercise training completely prevented significant sternotomy-induced cranial hypoperfusion independent of aortic banding (sternotomy-induced deficit, all sedentary males = -24 ± 6% vs. all exercise-trained males = -7 ± 3%; P ≤ 0.05). Female sex hormones protected against impaired CBF recovery during reperfusion, while chronic exercise training prevented sternotomy-induced cranial hypoperfusion despite cardiac pressure overload.NEW & NOTEWORTHY Our findings suggest a median sternotomy may predispose patients, possibly postmenopausal women and sedentary men, to perioperative cerebral ischemia, an increased risk of cardiac surgery-related stroke, and resulting neurocognitive impairments. Specifically, data from this common surgical procedure show: 1) median sternotomy independently decreases cranial perfusion; 2) female sex hormones improve cranial blood flow recovery following sternotomy; and 3) exercise prehabilitation prevents sternotomy-induced cranial hypoperfusion. Exercise prehabilitation before cardiac surgery may be advantageous for capable patients.


Assuntos
Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular , Terapia por Exercício/métodos , Hormônios Esteroides Gonadais/metabolismo , Esternotomia/efeitos adversos , Esternotomia/reabilitação , Animais , Isquemia Encefálica/etiologia , Feminino , Masculino , Cuidados Pré-Operatórios/métodos , Suínos , Porco Miniatura
14.
Microcirculation ; 24(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27889934

RESUMO

EXT-induced arteriolar adaptations in skeletal muscle are heterogeneous because of spatial variations in muscle fiber type composition and fiber recruitment patterns during exercise. The purpose of this report is to summarize a series of experiments conducted to test the hypothesis that changes in vascular gene expression are signaled by alterations in shear stress resulting from increases in blood flow, muscle fiber type composition, and fiber recruitment patterns. We also report results from a follow-up study of Ankrd23, one gene whose expression was changed by EXT. We expected to see differences in magnitude of changes in gene expression along arteriolar trees and between/among arteriolar trees but similar directional changes. However, transcriptional profiles of arterioles/arteries from OLETF rats exposed to END or SIT reveal that EXT does not lead to similar directional changes in the transcriptome among arteriolar trees of different skeletal muscles or along arteriolar trees within a particular muscle. END caused the most changes in gene expression in 2A arterioles of soleus and white gastrocnemius with little to no changes in the FAs. Ingenuity Pathway Analysis across vessels revealed significant changes in gene expression in 18 pathways. EXT increased expression of some genes (Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein-binding protein, alpha (Gnat1), and Bcl2l1) in all arterioles examined, but decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). Many contractile and/or structural protein genes were increased by SIT in the gastrocnemius FA, but the same genes exhibited decreased expression in red gastrocnemius arterioles. Ankrd23 mRNA levels increased with increasing branch order in the gastrocnemius arteriolar tree and were increased 19-fold in gastrocnemius muscle FA by SIT. Follow-up experiments indicate that Ankrd23 mRNA level was increased 14-fold in cannulated gastrocnemius FA when intraluminal pressure was increased from 90 and 180 cm H2O for 4 hours. Also, Ankrd23-/- mice exhibit limited ability to form collateral arteries following femoral artery occlusion compared to WT mice (angioscore WT=0.18±0.03; Ankrd23-/- =0.04±0.01). Further research will be required to determine whether Ankrd23 plays an important role in mechanically induced vascular remodeling of the arterial tree in skeletal muscle.


Assuntos
Arteríolas/metabolismo , Músculo Esquelético/irrigação sanguínea , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Arteríolas/anatomia & histologia , Expressão Gênica , Humanos , Camundongos , Proteínas Musculares/análise , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteínas Nucleares , Reatores Nucleares , Ratos
15.
Basic Res Cardiol ; 111(6): 61, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27624732

RESUMO

Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.


Assuntos
Circulação Coronária , Endotélio Vascular/fisiopatologia , Hiperlipoproteinemia Tipo II/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Doença da Artéria Coronariana/fisiopatologia , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Consumo de Oxigênio/fisiologia , Suínos
16.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G387-95, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27445343

RESUMO

Hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats develop obesity, insulin resistance, and nonalcoholic fatty liver disease (NAFLD), but lifestyle modifications, such as caloric restriction (CR), can prevent these conditions. We sought to determine if prior CR had protective effects on metabolic health and NAFLD development following a 4-wk return to ad libitum (AL) feeding. Four-week-old male OLETF rats (n = 8-10/group) were fed AL for 16 wk (O-AL), CR for 16 wk (O-CR; ∼70% kcal of O-AL), or CR for 12 wk followed by 4 wk of AL feeding (O-AL4wk). CR-induced benefit in prevention of NAFLD, including reduced hepatic steatosis, inflammation, and markers of Kupffer cell activation/number, was largely lost in AL4wk rats. These findings occurred in conjunction with a partial loss of CR-induced beneficial effects on obesity and serum triglycerides in O-AL4wk rats, but in the absence of changes in serum glucose or insulin. CR-induced increases in hepatic mitochondrial respiration remained significantly elevated (P < 0.01) in O-AL4wk compared with O-AL rats, while mitochondrial [1-(14)C]palmitate oxidation, citrate synthase activity, and ß-hydroxyacyl-CoA dehydrogenase activity did not differ among OLETF groups. NAFLD development in O-AL4wk rats was accompanied by increases in the protein content of the de novo lipogenesis markers fatty acid synthase and stearoyl-CoA desaturase-1 and decreases in phosphorylated acetyl-CoA carboxylase (pACC)/ACC compared with O-CR rats (P < 0.05 for each). The beneficial effects of chronic CR on NAFLD development were largely lost with 4 wk of AL feeding in the hyperphagic OLETF rat, highlighting the importance of maintaining energy balance in the prevention of NAFLD.


Assuntos
Restrição Calórica , Fígado Gorduroso/dietoterapia , Animais , Biomarcadores , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Lipogênese , Masculino , Mitocôndrias Hepáticas/metabolismo , Ratos , Ratos Endogâmicos OLETF
17.
Physiol Rep ; 4(13)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27405970

RESUMO

Interval sprint exercise performed on a manually propelled treadmill, where the hands grip the handle bars, engages lower and upper limb skeletal muscle, but little is known regarding the effects of this exercise modality on the upper limb vasculature. We tested the hypotheses that an acute bout of sprint exercise and 6 weeks of training induces brachial artery (BA) and forearm vascular remodeling, favoring a more compliant system. Before and following a single bout of exercise as well as 6 weeks of training three types of vascular properties/methodologies were examined in healthy men: (1) stiffness of the entire upper limb vascular system (pulse wave velocity (PWV); (2) local stiffness of the BA; and (3) properties of the entire forearm vascular bed (determined by a modified lumped parameter Windkessel model). Following sprint exercise, PWV declined (P < 0.01), indices of BA stiffness did not change (P ≥ 0.10), and forearm vascular bed compliance increased and inertance and viscoelasticity decreased (P ≤ 0.03). Following manually propelled treadmill training, PWV remained unchanged (P = 0.31), indices of BA stiffness increased (P ≤ 0.05) and forearm vascular bed viscoelasticity declined (P = 0.02), but resistance, compliance, and inertance remained unchanged (P ≥ 0.10) compared with pretraining values. Sprint exercise induced a more compliant forearm vascular bed, without altering indices of BA stiffness. These effects were transient, as following training the forearm vascular bed was not more compliant and indices of BA stiffness increased. On the basis of these data, we conclude that adaptations to acute and chronic sprint exercise on a manually propelled treadmill are not uniform along the arterial tree in upper limb.


Assuntos
Artéria Braquial/fisiologia , Teste de Esforço , Exercício Físico/fisiologia , Força da Mão , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Corrida , Remodelação Vascular , Rigidez Vascular , Adaptação Fisiológica , Adolescente , Adulto , Antebraço , Voluntários Saudáveis , Humanos , Masculino , Modelos Cardiovasculares , Análise de Onda de Pulso , Fluxo Sanguíneo Regional , Fatores de Tempo , Resistência Vascular , Adulto Jovem
18.
J Am Heart Assoc ; 5(5)2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27207966

RESUMO

BACKGROUND: Cognitive impairment in the setting of heart failure with preserved ejection fraction remains poorly understood. Using aortic-banded miniature swine displaying pathological features of human heart failure with preserved ejection fraction, we tested the hypothesis that increased carotid artery stiffness and altered carotid blood flow control are associated with impaired memory independent of decreased cardiac output. Furthermore, we hypothesized that chronic exercise prevents carotid artery vascular restructuring and preserves normal blood flow control and cognition in heart failure with preserved ejection fraction. METHODS AND RESULTS: Yucatan pigs aged 8 months were divided into 3 groups: control (n=7), aortic-banded sedentary (n=7), and aortic-banded exercise trained (n=7). At 6 months following aortic-banded or control conditions, memory was evaluated using a spatial hole-board task. Carotid artery vascular mechanics and blood flow were assessed at rest, and blood flow control was examined during transient vena cava occlusion. Independent of decreased cardiac output, the aortic-banded group exhibited impaired memory that was associated with carotid artery vascular stiffening, elevated carotid artery vascular resistance, and exaggerated reductions in carotid artery blood flow during vena cava occlusion. Chronic exercise augmented memory scores, normalized blood flow control, and improved indices of carotid artery vascular stiffening. Indices of vascular stiffening were significantly correlated with average memory score. CONCLUSIONS: Carotid artery stiffness and altered vasomotor control correlate with impaired cognition independent of cardiac systolic dysfunction. Carotid artery vascular mechanics may serve as a biomarker for vascular cognitive impairment in heart failure with preserved ejection fraction. Chronic low-intensity exercise reduces vascular stiffening and improves cognition, highlighting the utility of exercise therapy for treating vascular cognitive impairment in heart failure with preserved ejection fraction.


Assuntos
Débito Cardíaco/fisiologia , Artérias Carótidas/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Condicionamento Físico Animal , Volume Sistólico , Rigidez Vascular/fisiologia , Animais , Aorta/cirurgia , Fenômenos Biomecânicos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/psicologia , Hemodinâmica , Masculino , Suínos , Porco Miniatura , Resistência Vascular
19.
J Physiol ; 594(18): 5271-84, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27104887

RESUMO

KEY POINTS: Physiologically relevant rodent models of non-alcoholic steatohepatitis (NASH) that resemble the human condition are limited. Exercise training and energy restriction are first-line recommendations for the treatment of NASH. Hyperphagic Otsuka Long-Evans Tokushima fatty rats fed a western diet high in fat, sucrose and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype. Moderate intensity exercise training and modest energy restriction provided some improvement in the histological features of NASH that coincided with alterations in markers of hepatic stellate cell activation and extracellular matrix remodelling. The present study highlights the importance of lifestyle modification, including exercise training and energy restriction, in the regulation of advanced liver disease. ABSTRACT: The incidence of non-alcoholic steatohepatitis (NASH) is rising but the efficacy of lifestyle modifications to improve NASH-related outcomes remain unclear. We hypothesized that a western diet (WD) would induce NASH in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat and that lifestyle modification would improve this condition. Eight-week-old Long-Evans Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose) or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional WD-fed OLETFs were randomized to sedentary (O-SED), food restriction (O-FR; ∼25% kcal reduction vs. O-SED) or exercise training (O-EX; treadmill running 20 m min(-1) with a 15% incline, 60 min day(-1) , 5 days week(-1) ) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as elevated inflammation and non-alcoholic fatty liver disease activity scores, and hepatic stellate cell activation (α-smooth muscle actin) compared to Long-Evans Tokushima Otsuka rats. FR and EX modestly improved NASH-related fibrosis markers (FR: hydroxyproline content, P < 0.01; EX: collagen 1α1 mRNA, P < 0.05; both: fibrosis score, P < 0.01) and inflammation (both: inflammation score; FR: interleukin-1ß and tumor necrosis factor α) vs. O-SED. FR reduced hepatic stellate cell activation markers (transforming growth factor-ß protein and α-smooth muscle actin mRNA), whereas EX increased the hepatic stellate cell senescence marker CCN1 (P < 0.01 vs. O-SED). Additionally, both FR and EX normalized extracellular matrix remodelling markers to levels similar to L-WD (P > 0.05). Although neither EX nor FR led to complete resolution of the WD-induced NASH phenotype, both independently benefitted liver fibrosis via altered hepatic stellate cell activation and extracellular matrix remodelling.


Assuntos
Restrição Calórica , Cirrose Hepática/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Condicionamento Físico Animal , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Colesterol na Dieta/efeitos adversos , Citocinas/genética , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose Alimentar/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/dietoterapia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/metabolismo , Ratos Endogâmicos OLETF
20.
J Appl Physiol (1985) ; 120(1): 1-16, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26472876

RESUMO

This manuscript summarizes and discusses adaptations of skeletal muscle vasculature induced by physical activity and applies this understanding to benefits of exercise in prevention and treatment of type 2 diabetes (T2D). Arteriolar trees of skeletal muscle are heterogeneous. Exercise training increases capillary exchange and blood flow capacities. The distribution of vascular adaptation to different types of exercise training are influenced by muscle fiber type composition and fiber recruitment patterns that produce different modes of exercise. Thus training-induced adaptations in vascular structure and vascular control in skeletal muscle are not homogeneously distributed throughout skeletal muscle or along the arteriolar tree within a muscle. Results summarized indicate that similar principles apply to vascular adaptation in skeletal muscle in T2D. It is concluded that exercise training-induced changes in vascular gene expression differ along the arteriolar tree and by skeletal muscle fiber type composition. Results suggest that it is unlikely that hemodynamic forces are the only exercise-induced signals mediating the regulation of vascular gene expression. In patients with T2D, exercise training is perhaps the most effective treatment of the many related symptoms. Training-induced changes in the vasculature and in insulin signaling in the muscle fibers and vasculature augment glucose and insulin delivery as well as glucose uptake. If these adaptations occur in a sufficient amount of muscle mass, exposure to hyperglycemia and hyperinsulinemia will decrease along with the risk of microvascular complications throughout the body. It is postulated that exercise sessions in programs of sufficient duration, that engage as much skeletal muscle mass as possible, and that recruit as many muscle fibers within each muscle as possible will produce the greatest benefit. The added benefit of combined resistance and aerobic training programs and of high-intensity exercise programs is not simply "more exercise is better".


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Atividade Motora , Músculo Esquelético/fisiopatologia , Terapia por Exercício , Humanos , Neovascularização Fisiológica , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA