RESUMO
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects 6-7 million people worldwide. The dichloromethane extract obtained from the aerial parts of Gymnocoronis spilanthoides var subcordata showed trypanocidal activity in vitro. The fractionation of the dewaxed organic extract via column chromatography led to the isolation of three diterpenoids: ent-9α,11α-dihydroxy-15-oxo-kaur-16-en-19-oic acid or adenostemmoic acid B, (16R)-ent-11α-hydroxy-15-oxokauran-19-oic acid and ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid. These compounds showed IC50 values of 10.6, 15.9 and 4.8 µM against T. cruzi epimastigotes, respectively. When tested against amastigotes, the diterpenoids afforded IC50 values of 6.1, 19.5 and 60.6 µM, respectively. The cytotoxicity of the compounds was tested on mammalian cells using an MTT assay, resulting in CC50s of 321.8, 23.3 and 14.8 µM, respectively. The effect of adenostemmoic acid B on T. cruzi was examined at the ultrastructural level using transmission microscopy. Treatment with 20 µM for 48 h stimulated the formation of abnormal cytosolic membranous structures in the parasite. This compound also showed an anti-inflammatory effect in murine macrophages stimulated with LPS and other TLR agonists. Treatment of macrophages with adenostemmoic acid B was able to reduce TNF secretion and nitric oxide production, while increasing IL-10 production. The combination of adenostemmoic acid B with benznidazole resulted in greater inhibition of NF-kB and a decrease in nitrite concentration. The administration of adenostemmoic acid B to mice infected with trypomastigotes of T. cruzi at the dose of 1 mg/kg/day for five days produced a significant decrease in parasitemia levels and weight loss. Treatment with the association with benznidazole increased the survival time of the animals. In view of these results, adenostemmoic acid B could be considered a promising candidate for further studies in the search for new treatments for Chagas disease.
RESUMO
Asteraceae (Compositae), commonly known as the sunflower family, is one of the largest plant families in the world and includes several species with pharmacological properties. In the search for new antiviral candidates, an in vitro screening against dengue virus (DENV) was performed on a series of dichloromethane and methanolic extracts prepared from six Asteraceae species, including Acmella bellidioides, Campuloclinium macrocephalum, Grindelia pulchella, Grindelia chiloensis, Helenium radiatum, and Viguiera tuberosa, along with pure phytochemicals isolated from Asteraceae: mikanolide (1), eupatoriopicrin (2), eupahakonenin B (3), minimolide (4), estafietin (5), 2-oxo-8-deoxyligustrin (6), santhemoidin C (7), euparin (8), jaceidin (9), nepetin (10), jaceosidin (11), eryodictiol (12), eupatorin (13), and 5-demethylsinensetin (14). Results showed that the dichloromethane extracts of C. macrocephalum and H. radiatum and the methanolic extracts prepared from C. macrocephalum and G. pulchella were highly active and selective against DENV-2, affording EC50 values of 0.11, 0.15, 1.80, and 3.85 µg/mL, respectively, and SIs of 171.0, 18.8, >17.36, and 64.9, respectively. From the pool of phytochemicals tested, compounds 6, 7, and 8 stand out as the most active (EC50 = 3.7, 3.1, and 6.8 µM, respectively; SI = 5.9, 6.7, and >73.4, respectively). These results demonstrate that Asteraceae species and their chemical constituents represent valuable sources of new antiviral molecules.
Assuntos
Asteraceae , Sesquiterpenos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Asteraceae/química , Cloreto de Metileno , Compostos Fitoquímicos/farmacologia , Antivirais/farmacologia , Sesquiterpenos/químicaRESUMO
Chagas disease is an infection caused by the protozoan Trypanosoma cruzi, affecting 6-8 million people worldwide. Only two drugs are available for its treatment, having a limited efficacy and adverse side-effects. Estafietin is a sesquiterpene lactone isolated from Stevia alpina with in vitro activity against T. cruzi and low cytotoxicity against mammalian cells. The aim of this work was to predict the toxicologic profile of estafietin by in silico methods and assess its in vivo activity on a murine model of Chagas disease. Estafietin showed low toxicity according to pkCSM web tool and passed the PAINS filter from PAINS-remover web server. The treatment of infected mice with 1 mg/Kg/day of estafietin for five consecutive days administrated by intraperitoneal route significatively decreased parasitemia levels and reduced inflammatory infiltrates and myocyte damage on muscle tissue. These results suggest that estafietin had effect both on acute and chronic stages of the infection.
Assuntos
Doença de Chagas , Stevia , Tripanossomicidas , Trypanosoma cruzi , Humanos , Camundongos , Animais , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Sesquiterpenos de Guaiano/farmacologia , Parasitemia/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico , MamíferosRESUMO
Chagas disease, African trypanosomiasis and Leishmaniasis are neglected parasitic diseases which affect millions of people worldwide. In a previous work, we report the antiprotozoal activity of the dichloromethane extract of Mikania periplocifolia Hook. & Arn. (Asteraceae). The aim of this work was to isolate and identify the bioactive compounds present in the extract. The fractionation of the dichloromethane extract has led to the isolation of the sesquiterpene lactone miscandenin and the flavonoid onopordin, together with the sesquiterpene lactones mikanolide, dihydromikanolide and deoxymikanolide, which have previously shown antiprotozoal activity. Miscandenin and onopordin were assayed in vitro against Trypanosoma cruzi, T. brucei and Leishmania braziliensis. Miscandenin was active against T. cruzi trypomastigotes and amastigotes with IC50 values of 9.1 and 7.7 µg/ml, respectively. This sesquiterpene lactone and the flavonoid onopordin showed activity against T. brucei trypomastigotes (IC50 = 0.16 and 0.37 µg/ml) and L. braziliensis promastigotes (IC50 = 0.6 and 1.2 µg/ml), respectively. The CC50 values on mammalian cells were 37.9 and 53.4 µg/ml for miscandenin and onopordin, respectively. Besides, the pharmacokinetic and physicochemical properties of miscandenin were assessed in silico, showing a good drug-likeness profile. Our results highlight this compound as a promising candidate for further preclinical studies in the search of new drugs for the treatment of trypanosomiasis and leishmaniasis.
Assuntos
Antiprotozoários , Asteraceae , Leishmaniose , Mikania , Sesquiterpenos , Trypanosoma cruzi , Animais , Humanos , Asteraceae/química , Mikania/química , Cloreto de Metileno/uso terapêutico , Extratos Vegetais/química , Estrutura Molecular , Antiprotozoários/farmacologia , Leishmaniose/tratamento farmacológico , Flavonoides/farmacologia , Lactonas , MamíferosRESUMO
The discovery of the endocannabinoid system (ECS) dates back only 30 years. Although many research groups have been elucidating its components, location, functions and metabolism, the peculiarities of the compounds considered "neurotransmitters" of ECS generate questions that have not yet been answered or controversies in the literature. In this context, we studied the molecular behaviour of the main endocannabinoid compounds and the main phytocannabinoids in eukaryotic outer and inner model membranes. The high lipophilicity of these compounds gives place to the hypothesis that cannabinoids may reach the molecular targets through the lipid bilayer. This consideration is not only for the cannabinoid receptors but also for other (many) targets that these bioactive molecules modulate (Watkins, 2019; Nelson et al., 2020; Jakowiecki and Filipek, 2016). Given the reported multitarget action of these compounds and the differential behaviour towards the different receptors, studying the properties and dynamics of these cannabinoids in POPC and POPE model membranes become relevant. In this regard, we have studied the differential modulation of the endocannabinoids anandamide and 2-arachidonoyl-glycerol and the phytocannabinoids cannabidiol and trans-Δ9-tetrahydrocannabinol to eukaryotic outer and inner model membranes. Results show that behaviours favour the mobility of the bioactive molecules studied by the external eukaryotic model membrane. As well as, the internal eukaryotic model membrane is less fluid, favouring the stabilisation of folded conformations or the positioning of the molecules in the centre of the bilayer. These results provide relevant evidence that contributes to a deep inside understanding of the behaviour of the primary endogenous ligands of ECS, together with the principal phytocannabinoids of C. sativa.
Assuntos
Canabidiol , Endometriose , Feminino , Humanos , Endocanabinoides , Membranas , DronabinolRESUMO
The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the extracts and isolated compounds.
Assuntos
Antioxidantes/farmacologia , Diterpenos do Tipo Caurano/química , Glucosídeos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Stevia/química , Edulcorantes/química , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Etnobotânica , Etnofarmacologia , Flavonoides/análise , Células HeLa , Humanos , Concentração Inibidora 50 , Medicina Tradicional , Camundongos , Extratos Vegetais/química , RatosRESUMO
BACKGROUND: Deoxymikanolide is a sesquiterpene lactone isolated from Mikania micrantha and M. variifolia which, has previously demonstrated in vitro activity on Trypanosoma cruzi and in vivo activity on an infected mouse model. PURPOSE: Based on these promising findings, the aim of this study was to investigate the mechanism of action of this compound on different parasite targets. METHODS: The interaction of deoxymikanolide with hemin was examined under reducing and non- reducing conditions by measuring modifications in the Soret absorption band of hemin; the thiol interaction was determined spectrophotometrically through its reaction with 5,5'-dithiobis-2-nitrobenzoate in the presence of glutathione; activity on the parasite antioxidant system was evaluated by measuring the activity of the superoxide dismutase and trypanothione reductase enzymes, together with the intracellular oxidative state by flow cytometry. Superoxide dismutase and trypanothione reductase activities were spectrophotometrically tested. Cell viability, phosphatidylserine exposure and mitochondrial membrane potential were assessed by means of propidium iodide, annexin-V and rhodamine 123 staining, respectively; sterols were qualitatively and quantitatively tested by TLC; ultrastructural changes were analyzed by transmission electron microscopy. Autophagic cells were detected by staining with monodansylcadaverine. RESULTS: Deoxymikanolide decreased the number of reduced thiol groups within the parasites, which led to their subsequent vulnerability to oxidative stress. Treatment of the parasites with the compound produced a depolarization of the mitochondrial membrane even though the plasma membrane permeabilization was not affected. Deoxymikanolide did not affect the intracellular redox state and so the mitochondrial dysfunction produced by this compound could not be attributed to ROS generation. The antioxidant defense system was affected by deoxymikanolide at twenty four hours of treatment, when both an increased oxidative stress and decreased activity of superoxide dismutase and trypanothione reductase (40 and 60% respectively) were observed. Both the oxidative stress and mitochondrial dysfunction induce parasite death by apoptosis and autophagy. CONCLUSION: Based on our results, deoxymikanolide would exert its anti-T cruzi activity as a strong thiol blocking agent and by producing mitochondrial dysfunction.
Assuntos
Lactonas/farmacologia , Sesquiterpenos de Germacrano/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glutationa/metabolismo , Hemina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mikania/química , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Esteróis/biossíntese , Superóxido Dismutase/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma cruzi/ultraestruturaRESUMO
Four sesquiterpene lactones, mikanolide, deoxymikanolide, dihydromikanolide and scandenolide, were isolated by a bioassay-guided fractionation of Mikania variifolia and Mikania micrantha dichloromethane extracts. Mikanolide and deoxymikanolide were the major compounds in both extracts (2.2% and 0.4% for Mikania variifolia and 21.0% and 6.4% for Mikania micrantha respectively, calculated on extract dry weight). Mikanolide, deoxymikanolide and dihydromikanolide were active against Trypanosoma cruzi epimastigotes (50% inhibitory concentrations of 0.7, 0.08 and 2.5 µg/mL, for each compound respectively). These sesquiterpene lactones were also active against the bloodstream trypomastigotes (50% inhibitory concentrations for each compound were 2.1, 1.5 and 0.3 µg/mL, respectively) and against amastigotes (50% inhibitory concentrations for each compound were 4.5, 6.3 and 8.5 µg/mL, respectively). By contrast, scandenolide was not active on Trypanosoma cruzi. Besides, mikanolide and deoxymikanolide were also active on Leishmania braziliensis promastigotes (50% inhibitory concentrations of 5.1 and 11.5 µg/mL, respectively). The four sesquiterpene lactones were tested for their cytotoxicity on THP 1 cells. Deoxymikanolide presented the highest selectivity index for trypomastigotes (SI = 54) and amastigotes (SI = 12.5). In an in vivo model of Trypanosoma cruzi infection, deoxymikanolide was able to decrease the parasitemia and the weight loss associated to the acute phase of the parasite infection. More importantly, while 100% of control mice died by day 22 after receiving a lethal T. cruzi infection, 70% of deoxymikanolide-treated mice survived. We also observed that this compound increased TNF-α and IL-12 production by macrophages, which could contribute to control T. cruzi infection.
Assuntos
Lactonas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Mikania/química , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Descoberta de Drogas , Interleucina-12/biossíntese , Interleucina-12/imunologia , Lactonas/administração & dosagem , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/uso terapêutico , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos de Germacrano/administração & dosagem , Sesquiterpenos de Germacrano/isolamento & purificação , Sesquiterpenos de Germacrano/farmacologia , Sesquiterpenos de Germacrano/uso terapêutico , Trypanosoma cruzi/isolamento & purificação , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Among the natural compounds, terpenoids play an important role in the drug discovery process for tropical diseases. The aim of the present work was to isolate antiprotozoal compounds from Ambrosia elatior and A. scabra. The sesquiterpene lactone (STL) cumanin was isolated from A. elatior whereas two other STLs, psilostachyin and cordilin, and one sterol glycoside, daucosterol, were isolated from A. scabra. Cumanin and cordilin were active against Trypanosoma cruzi epimastigotes showing 50% inhibition concentrations (IC50) values of 12 µM and 26 µM, respectively. Moreover, these compounds are active against bloodstream trypomastigotes, regardless of the T. cruzi strain tested. Psilostachyin and cumanin were also active against amastigote forms with IC50 values of 21 µM and 8 µM, respectively. By contrast, daucosterol showed moderate activity on epimastigotes and trypomastigotes and was inactive against amastigote forms. We also found that cumanin and psilostachyin exhibited an additive effect in their trypanocidal activity when these two drugs were tested together. Cumanin has leishmanicidal activity with growth inhibition values greater than 80% at a concentration of 5 µg/ml (19 µM), against both L. braziliensis and L. amazonensis promastigotes. In an in vivo model of T. cruzi infection, cumanin was more active than benznidazole, producing an 8-fold reduction in parasitemia levels during the acute phase of the infection compared with the control group, and more importantly, a reduction in mortality with 66% of the animals surviving, in comparison with 100% mortality in the control group. Cumanin also showed nontoxic effects at the doses assayed in vivo, as determined using markers of hepatic damage.
Assuntos
Ambrosia/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Terpenos/isolamento & purificação , Terpenos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos C3H , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Terpenos/administração & dosagemRESUMO
The aim of this study was to investigate the antiprotozoal and antiviral activities of four Argentinean Mikania species. The organic and aqueous extracts of Mikania micrantha, M. parodii, M. periplocifolia, and M. cordifolia were tested on Trypanosoma cruzi epimastigotes, Leishmania braziliensis promastigotes, and dengue virus type 2. The organic extract of M. micrantha was the most active against T. cruzi and L. braziliensis exhibiting a growth inhibition of 77.6 ± 4.5% and 84.9 ± 6.1%, respectively, at a concentration of 10 µg/ml. The bioguided fractionation of M. micrantha organic extract led to the identification of two active fractions. The chromatographic profile and infrared analysis of these fractions revealed the presence of sesquiterpene lactones. None of the tested extracts were active against dengue virus type 2.