Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904995

RESUMO

How cell-type-specific chromatin landscapes emerge and progress during metazoan ontogenesis remains an important question. Transcription factors are expressed in a cell-type-specific manner and recruit chromatin-regulatory machinery to specific genomic loci. In contrast, chromatin-regulatory proteins are expressed broadly and are assumed to exert the same intrinsic function across cell types. However, human genetics studies have revealed an unexpected vulnerability of neurodevelopment to chromatin factor mutations with unknown mechanisms. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Of the 14 chromatin regulators, two are integral components of a histone H3K4 demethylase complex; the catalytic subunit LSD1 and an H3K4me0-reader protein PHF21A adopt neuron-specific forms. We found that canonical PHF21A (PHF21A-c) binds to DNA by AT-hook motif, and the neuronal counterpart PHF21A-n lacks this DNA-binding function yet maintains H3K4me0 recognition intact. In-vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes identified the neuronal complex as a hypomorphic H3K4 demethylating machinery with reduced nucleosome engagement. Furthermore, an autism-associated PHF21A missense mutation, 1285 G>A, at the last nucleotide of the common exon immediately upstream of the neuronal microexon led to impaired splicing of PHF21A -n. Thus, ubiquitous chromatin regulatory complexes exert unique intrinsic functions in neurons via alternative splicing of their subunits and potentially contribute to faithful human brain development.

2.
Expert Rev Neurother ; 23(9): 775-790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551672

RESUMO

INTRODUCTION: Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED: In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION: For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Vírus , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Vírus/metabolismo
3.
Mol Ther Nucleic Acids ; 32: 127-143, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37025931

RESUMO

Alternative splicing (AS) of RNA molecules is a key contributor to transcriptome diversity. In humans, 90%-95% of multi-exon genes produce alternatively spliced RNA transcripts. Therefore, every single gene has the opportunity of producing multiple splice variants, including long non-coding RNA (lncRNA) genes that undergo RNA maturation steps such as conventional and alternative splicing. Emerging evidence suggests significant roles for these lncRNA splice variants in many aspects of cell biology. Differential changes in expression of specific lncRNA splice variants have also been associated with many diseases including cancer. This review covers the current knowledge on this emerging topic of investigation. We provide exclusive insights on the AS landscape of lncRNAs and also describe at the molecular level the functional relevance of lncRNA splice variants, i.e., RNA-based differential functions, production of micropeptides, and generation of circular RNAs. Finally, we discuss exciting perspectives for this emerging field and outline the work required to further develop research endeavors in this field.

4.
Cells ; 12(4)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831282

RESUMO

During aging, changes in gene expression are associated with a decline in physical and cognitive abilities. Here, we investigate the connection between changes in mRNA and protein expression in the brain by comparing the transcriptome and proteome of the mouse cortex during aging. Our transcriptomic analysis revealed that aging mainly triggers gene activation in the cortex. We showed that an increase in mRNA expression correlates with protein expression, specifically in the anterior cingulate cortex, where we also observed an increase in cortical thickness during aging. Genes exhibiting an aging-dependent increase of mRNA and protein levels are involved in sensory perception and immune functions. Our proteomic analysis also identified changes in protein abundance in the aging cortex and highlighted a subset of proteins that were differentially enriched but exhibited stable mRNA levels during aging, implying the contribution of aging-related post- transcriptional and post-translational mechanisms. These specific genes were associated with general biological processes such as translation, ribosome assembly and protein degradation, and also important brain functions related to neuroplasticity. By decoupling mRNA and protein expression, we have thus characterized distinct subsets of genes that differentially adjust to cellular aging in the cerebral cortex.


Assuntos
Encéfalo , Proteômica , Camundongos , Animais , RNA Mensageiro/genética , Encéfalo/metabolismo , Envelhecimento/metabolismo , Proteoma/metabolismo
5.
Front Genet ; 14: 1089053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845399

RESUMO

Alternative splicing (AS) constitutes a mechanism by which protein-coding genes and long non-coding RNA (lncRNA) genes produce more than a single mature transcript. From plants to humans, AS is a powerful process that increases transcriptome complexity. Importantly, splice variants produced from AS can potentially encode for distinct protein isoforms which can lose or gain specific domains and, hence, differ in their functional properties. Advances in proteomics have shown that the proteome is indeed diverse due to the presence of numerous protein isoforms. For the past decades, with the help of advanced high-throughput technologies, numerous alternatively spliced transcripts have been identified. However, the low detection rate of protein isoforms in proteomic studies raised debatable questions on whether AS contributes to proteomic diversity and on how many AS events are really functional. We propose here to assess and discuss the impact of AS on proteomic complexity in the light of the technological progress, updated genome annotation, and current scientific knowledge.

6.
Genes (Basel) ; 14(1)2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36672913

RESUMO

Most pseudogenes are generated when an RNA transcript is reverse-transcribed and integrated into the genome at a new location. Pseudogenes are often considered as an imperfect and silent copy of a functional gene because of the accumulation of numerous mutations in their sequence. Here we report the presence of Pfh8-ps, a Phf8 retrotransposed pseudogene in the mouse genome, which has no disruptions in its coding sequence. We show that this pseudogene is mainly transcribed in testis and can produce a PHF8-PS protein in vivo. As the PHF8-PS protein has a well-conserved JmjC domain, we characterized its enzymatic activity and show that PHF8-PS does not have the intrinsic capability to demethylate H3K9me2 in vitro compared to the parental PHF8 protein. Surprisingly, PHF8-PS does not localize in the nucleus like PHF8, but rather is mostly located at the cytoplasm. Finally, our proteomic analysis of PHF8-PS-associated proteins revealed that PHF8-PS interacts not only with mitochondrial proteins, but also with prefoldin subunits (PFDN proteins) that deliver unfolded proteins to the cytosolic chaperonin complex implicated in the folding of cytosolic proteins. Together, our findings highlighted PHF8-PS as a new pseudogene-derived protein with distinct molecular functions from PHF8.


Assuntos
Pseudogenes , Fatores de Transcrição , Masculino , Animais , Camundongos , Fatores de Transcrição/genética , Pseudogenes/genética , Proteômica , Histona Desmetilases/genética , Histonas/genética
7.
Gen Relativ Gravit ; 54(12): 156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465478

RESUMO

Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.

8.
J Alzheimers Dis Rep ; 6(1): 599-606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275414

RESUMO

Background: Unravelling the mystery of Alzheimer's disease (AD) requires urgent resolution given the worldwide increase of the aging population. There is a growing concern that the current leading AD hypothesis, the amyloid cascade hypothesis, does not stand up to validation with respect to emerging new data. Indeed, several paradoxes are being discussed in the literature, for instance, both the deposition of the amyloid-ß peptide (Aß) and the intracellular neurofibrillary tangles could occur within the brain without any cognitive pathology. Thus, these paradoxes suggest that something more fundamental is at play in the onset of the disease and other key and related pathomechanisms must be investigated. Objective: The present study follows our previous investigations on the infectious hypothesis, which posits that some pathogens are linked to late onset AD. Our studies also build upon the finding that Aß is a powerful antimicrobial agent, produced by neurons in response to viral infection, capable of inhibiting pathogens as observed in in vitro experiments. Herein, we ask what are the molecular mechanisms in play when Aß neutralizes infectious pathogens? Methods: To answer this question, we probed at nanoscale lengths with FRET (Förster Resonance Energy Transfer), the interaction between Aß peptides and glycoprotein B (responsible of virus-cell binding) within the HSV-1 virion. Results: The experiments show an energy transfer between Aß peptides and glycoprotein B when membrane is intact. No energy transfer occurs after membrane disruption or treatment with blocking antibody. Conclusion: We concluded that Aß insert into viral membrane, close to glycoprotein B, and participate in virus neutralization.

9.
J Appl Microbiol ; 133(6): 3404-3412, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35977551

RESUMO

AIMS: Cheap, rapid tools for measuring emissions of Plasmopara viticola sporangia directly in the field are required to protect grapevines efficiently and sustainably against downy mildew. To this end, we adapted an existing loop-mediated isothermal amplification (LAMP) protocol based on ITS2 sequences, coupled with a rotating-arm sampler and simple cell lysis, for the in-field measurement of airborne sporangia of P. viticola. METHODS AND RESULTS: We estimated the sensitivity and specificity of the molecular reaction with an unpurified DNA template in controlled conditions, using the droplet digital PCR (ddPCR) as a reference. We show that the LAMP lower limit of quantification is 3.3 sporangia.m-3 air sampled. Cell lysis in KOH solution was less efficient than CTAB for DNA extraction, but the repeatability of the method was good. We tested this protocol directly in a plot at Chateau Dillon (Blanquefort, France) in which we monitored P. viticola sporangia concentrations from March to October 2020 (88 samples which revealed concentrations ranging from 0 to 243 sporangia.m-3 ). There was a significant quantitative correlation (R2  = 0.52) between ddPCR and LAMP results. CONCLUSION: LAMP analysis of an unpurified DNA matrix is a simple and reliable method for in-field estimations of the concentration of airborne P. viticola sporangia. SIGNIFICANCE AND IMPACT OF THE STUDY: This study constitutes a first step towards the development of a regional grapevine downy mildew monitoring network in the vineyards of Bordeaux.


Assuntos
Oomicetos , Peronospora , Vitis , Doenças das Plantas , Oomicetos/genética , Peronospora/genética
11.
Eur J Appl Physiol ; 122(4): 1085-1095, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182182

RESUMO

PURPOSE: Type 2 diabetes is associated with a higher risk of cardiovascular diseases, lowering the quality of life and increasing mortality rates of affected individuals. Circulating monocytes are tightly involved in the atherosclerosis process leading to cardiovascular diseases (CVD), and their inflammatory profile can be modified by exercise. The objective was to exploratory identify genes associated with CVD that could be regulated by high-intensity interval training (HIIT) in monocytes of type 2 diabetes patients. METHODS: Next-generation RNA sequencing (RNA-seq) analyses were conducted on isolated circulating monocytes (CD14+) of six women aged 60 and over with type 2 diabetes who completed a 12-week supervised HIIT intervention on a treadmill. RESULTS: Following the intervention, a reduction of resting diastolic blood pressure was observed. Concomitant with this result, 56 genes were found to be downregulated following HIIT intervention in isolated monocytes. A large proportion of the regulated genes was involved in cellular adhesion, migration and differentiation into an "atherosclerosis-specific" macrophage phenotype. CONCLUSION: The downregulation of transcripts in monocytes globally suggests a favorable cardiovascular effect of the HIIT in older women with type 2 diabetes. In the context of precision medicine and personalized exercise prescription, shedding light on the fundamental mechanisms underlying HIIT effects on the gene profile of immune cells is essential to develop efficient nonpharmacological strategies to prevent CVD in high-risk population.


Assuntos
Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Monócitos , Qualidade de Vida , Transcriptoma
12.
Biodivers Data J ; 10: e85587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761595

RESUMO

Background: For several decades, an increase in disease or pest emergences due to anthropogenic introduction or environmental changes has been recorded. This increase leads to serious threats to the genetic and species diversity of numerous ecosystems. Many of these events involve species with poor or no genomic resources (called here "orphan species"). This lack of resources is a serious limitation to our understanding of the origin of emergent populations, their ability to adapt to new environments and to predict future consequences to biodiversity. Analyses of genetic diversity are an efficient method to obtain this information rapidly, but require available polymorphic genetic markers. New information: We developed a generic bioinformatics pipeline to rapidly isolate such markers with the goal for the pipeline to be applied in studies of invasive taxa from different taxonomic groups, with a special focus on forest fungal pathogens and insect pests. This pipeline is based on: 1) an automated de novo genome assembly obtained from shotgun whole genome sequencing using paired-end Illumina technology; 2) the isolation of single-copy genes conserved in species related to the studied emergent organisms; 3) primer development for multiplexed short sequences obtained from these conserved genes. Previous studies have shown that intronic regions of these conserved genes generally contain several single nucleotide polymorphisms within species. The pipeline's functionality was evaluated with sequenced genomes of five invasive or expanding pathogen and pest species in Europe (Armillariaostoyae (Romagn.) Herink 1973, Bursaphelenchusxylophilus Steiner & Buhrer 1934, Sphaeropsissapinea (fr.) Dicko & B. Sutton 1980, Erysiphealphitoides (Griffon & Maubl.) U. Braun & S. Takam. 2000, Thaumetopoeapityocampa Denis & Schiffermüller, 1775). We successfully isolated several pools of one hundred short gene regions for each assembled genome, which can be amplified in multiplex. The bioinformatics pipeline is user-friendly and requires little computational resources. This easy-to-set-up and run method for genetic marker identification will be useful for numerous laboratories studying biological invasions, but with limited resources and expertise in bioinformatics.

13.
Immun Ageing ; 18(1): 29, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154615

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease ultimately manifesting as clinical dementia. Despite considerable effort and ample experimental data, the role of neuroinflammation related to systemic inflammation is still unsettled. While the implication of microglia is well recognized, the exact contribution of peripheral monocytes/macrophages is still largely unknown, especially concerning their role in the various stages of AD. OBJECTIVES: AD develops over decades and its clinical manifestation is preceded by subjective memory complaints (SMC) and mild cognitive impairment (MCI); thus, the question arises how the peripheral innate immune response changes with the progression of the disease. Therefore, to further investigate the roles of monocytes/macrophages in the progression of AD we assessed their phenotypes and functions in patients at SMC, MCI and AD stages and compared them with cognitively healthy controls. We also conceptualised an idealised mathematical model to explain the functionality of monocytes/macrophages along the progression of the disease. RESULTS: We show that there are distinct phenotypic and functional changes in monocyte and macrophage populations as the disease progresses. Higher free radical production upon stimulation could already be observed for the monocytes of SMC patients. The most striking results show that activation of peripheral monocytes (hyperactivation) is the strongest in the MCI group, at the prodromal stage of the disease. Monocytes exhibit significantly increased chemotaxis, free radical production, and cytokine production in response to TLR2 and TLR4 stimulation. CONCLUSION: Our data suggest that the peripheral innate immune system is activated during the progression from SMC through MCI to AD, with the highest levels of activation being in MCI subjects and the lowest in AD patients. Some of these parameters may be used as biomarkers, but more holistic immune studies are needed to find the best period of the disease for clinical intervention.

14.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032267

RESUMO

The choroid plexus (ChP) produces cerebrospinal fluid and forms an essential brain barrier. ChP tissues form in each brain ventricle, each one adopting a distinct shape, but remarkably little is known about the mechanisms underlying ChP development. Here, we show that epithelial WNT5A is crucial for determining fourth ventricle (4V) ChP morphogenesis and size in mouse. Systemic Wnt5a knockout, or forced Wnt5a overexpression beginning at embryonic day 10.5, profoundly reduced ChP size and development. However, Wnt5a expression was enriched in Foxj1-positive epithelial cells of 4V ChP plexus, and its conditional deletion in these cells affected the branched, villous morphology of the 4V ChP. We found that WNT5A was enriched in epithelial cells localized to the distal tips of 4V ChP villi, where WNT5A acted locally to activate non-canonical WNT signaling via ROR1 and ROR2 receptors. During 4V ChP development, MEIS1 bound to the proximal Wnt5a promoter, and gain- and loss-of-function approaches demonstrated that MEIS1 regulated Wnt5a expression. Collectively, our findings demonstrate a dual function of WNT5A in ChP development and identify MEIS transcription factors as upstream regulators of Wnt5a in the 4V ChP epithelium.


Assuntos
Plexo Corióideo/embriologia , Epitélio/metabolismo , Quarto Ventrículo/embriologia , Proteína Meis1/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Encéfalo/embriologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt-5a/genética
15.
Neuropsychiatr Dis Treat ; 17: 1311-1339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976546

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aß) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aß is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aß, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.

16.
Fungal Genet Biol ; 153: 103566, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991664

RESUMO

Fusarium graminearum is one of the most frequent causal agents of the Fusarium Head Blight, a cereal disease spread throughout the world, reducing grain production and quality. F. graminearum isolates are genetically and phenotypically highly diverse. Notably, remarkable variations of aggressiveness between isolates have been observed, which could reflect an adaptive potential of this pathogen. In this study, we aimed to characterize the genetic basis of aggressiveness variation observed in an F1 population (n = 94), for which genome sequences of both parental strains are available. Aggressiveness was assessed by a panel of in planta and in vitro proxies during two phenotyping trials including, among others, disease severity and mycotoxin accumulation in wheat spike. One major and single QTL was mapped for all the traits measured, on chromosome I, that explained up to 90% of the variance for disease severity. The confidence interval at the QTL spanned 1.2 Mb and contained 428 genes on the reference genome. Of these, four candidates were selected based on the postulate that a non-synonymous mutation affecting protein function may be responsible for phenotypic differences. Finally, a new mutation was identified and functionally validated in the gene FgVe1, coding for a velvet protein known to be involved in pathogenicity and secondary metabolism production in several fungi.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Triticum/microbiologia , Alelos , Mapeamento Cromossômico , Cromossomos Fúngicos , Genes Fúngicos , Mutação , Fenótipo , Locos de Características Quantitativas , Metabolismo Secundário/genética
17.
Front Physiol ; 12: 645646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868013

RESUMO

Many prospective studies have shown that a diet enriched in omega-3 polyunsaturated fatty acids (n-3 PUFAs) can improve cognitive function during normal aging and prevent the development of neurocognitive diseases. However, researchers have not elucidated how n-3 PUFAs are transferred from the blood to the brain or how they relate to cognitive scores. Transport into and out of the central nervous system depends on two main sets of barriers: the blood-brain barrier (BBB) between peripheral blood and brain tissue and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) between the blood and the CSF. In this review, the current knowledge of how lipids cross these barriers to reach the CNS is presented and discussed. Implications of these processes in health and disease, particularly during aging and neurodegenerative diseases, are also addressed. An assessment provided here is that the current knowledge of how lipids cross these barriers in humans is limited, which hence potentially restrains our capacity to intervene in and prevent neurodegenerative diseases.

18.
Trends Genet ; 37(8): 695-698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892960

RESUMO

Like protein-coding genes, long noncoding RNA (lncRNA) genes are composed of introns and exons. After their transcription, lncRNAs are subject to constitutive and/or alternative splicing. Here, we describe the current knowledge on lncRNA splice variants and their functional implications in cell biology.


Assuntos
Processamento Alternativo/genética , DNA Recombinante/genética , RNA Longo não Codificante/genética , Éxons/genética , Íntrons/genética
19.
Front Neurosci ; 15: 630502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679311

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by extracellular amyloid ß (Aß) and intraneuronal tau protein aggregations. One risk factor for developing AD is the APOE gene coding for the apolipoprotein E protein (apoE). Humans have three versions of APOE gene: ε2, ε3, and ε4 allele. Carrying the ε4 allele is an AD risk factor while carrying the ε2 allele is protective. ApoE is a component of lipoprotein particles in the plasma at the periphery, as well as in the cerebrospinal fluid (CSF) and in the interstitial fluid (ISF) of brain parenchyma in the central nervous system (CNS). ApoE is a major lipid transporter that plays a pivotal role in the development, maintenance, and repair of the CNS, and that regulates multiple important signaling pathways. This review will focus on the critical role of apoE in AD pathogenesis and some of the currently apoE-based therapeutics developed in the treatment of AD.

20.
Theranostics ; 10(1): 201-217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903115

RESUMO

Carcinomatous progression and recurrence are the main therapeutic challenges frequently faced by patients with refractory tumors. However, the underlined molecular mechanism remains obscure. Methods: We found Musashi-1 (MSI1) transported into cytosol under stress condition by confocal microscopy and cell fractionation. Argonaute 2 (AGO2) was then identified as a cytosolic binding partner of MSI1 by Mass Spectrametry, immunoprecipitation, and recombinant protein pull-down assay. We used RNA-IP to determine the MSI1/AGO2 associated regions on downstream target mRNAs. Finally, we overexpressed C-terminus of MSI1 to disrupt endogenous MSI1/AGO2 interaction and confirm it effects on tmor progression. Results: Malignant tumors exhibit elevated level of cytosolic Musashi-1 (MSI1), which translocates into cytosol in response to stress and promote tumor progression. Cytosolic MSI1 forms a complex with AGO2 and stabilize or destabilize its target mRNAs by respectively binding to their 3´ untranslated region or coding domain sequence. Both MSI1 translocation and MSI1/AGO2 binding are essential for promoting tumor progression. Blocking MSI1 shuttling by either chemical inhibition or point mutation attenuates the growth of GBM-xenografts in mice. Importantly, overexpression of the C-terminus of MSI1 disrupts endogenous MSI1/AGO2 interaction and effectively reduces stress-induced tumor progression. Conclusion: Our findings highlight novel molecular functions of MSI1 during stress-induced carcinomatous recurrence, and suggest a new therapeutic strategy for refractory malignancies by targeting MSI1 translocation and its interaction with AGOs.


Assuntos
Proteínas Argonautas/metabolismo , Carcinoma/metabolismo , Recidiva Local de Neoplasia/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA