Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Catal ; 13(12): 8195-8205, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37342832

RESUMO

Direct bioelectrocatalysis applied in biosensors, biofuel cells, and bioelectrosynthesis is based on an efficient electron transfer between enzymes and electrodes in the absence of redox mediators. Some oxidoreductases are capable of direct electron transfer (DET), while others achieve the enzyme to electrode electron transfer (ET) by employing an electron-transferring domain. Cellobiose dehydrogenase (CDH) is the most-studied multidomain bioelectrocatalyst and features a catalytic flavodehydrogenase domain and a mobile, electron-transferring cytochrome domain connected by a flexible linker. The ET to the physiological redox partner lytic polysaccharide monooxygenase or, ex vivo, electrodes depends on the flexibility of the electron transferring domain and its connecting linker, but the regulatory mechanism is little understood. Studying the linker sequences of currently characterized CDH classes we observed that the inner, mobile linker sequence is flanked by two outer linker regions that are in close contact with the adjacent domain. A function-based definition of the linker region in CDH is proposed and has been verified by rationally designed variants of Neurospora crassa CDH. The effect of linker length and its domain attachment on electron transfer rates has been determined by biochemical and electrochemical methods, while distances between the domains of CDH variants were computed. This study elucidates the regulatory mechanism of the interdomain linker on electron transfer by determining the minimum linker length, observing the effects of elongated linkers, and testing the covalent stabilization of a linker part to the flavodehydrogenase domain. The evolutionary guided, rational design of the interdomain linker provides a strategy to optimize electron transfer rates in multidomain enzymes and maximize their bioelectrocatalytic performance.

2.
ACS Catal ; 13(7): 4454-4467, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066045

RESUMO

Copper-dependent lytic polysaccharide monooxygenases (LPMOs) classified in Auxiliary Activity (AA) families are considered indispensable as synergistic partners for cellulolytic enzymes to saccharify recalcitrant lignocellulosic plant biomass. In this study, we characterized two fungal oxidoreductases from the new AA16 family. We found that MtAA16A from Myceliophthora thermophila and AnAA16A from Aspergillus nidulans did not catalyze the oxidative cleavage of oligo- and polysaccharides. Indeed, the MtAA16A crystal structure showed a fairly LPMO-typical histidine brace active site, but the cellulose-acting LPMO-typical flat aromatic surface parallel to the histidine brace region was lacking. Further, we showed that both AA16 proteins are able to oxidize low-molecular-weight reductants to produce H2O2. The oxidase activity of the AA16s substantially boosted cellulose degradation by four AA9 LPMOs from M. thermophila (MtLPMO9s) but not by three AA9 LPMOs from Neurospora crassa (NcLPMO9s). The interplay with MtLPMO9s is explained by the H2O2-producing capability of the AA16s, which, in the presence of cellulose, allows the MtLPMO9s to optimally drive their peroxygenase activity. Replacement of MtAA16A by glucose oxidase (AnGOX) with the same H2O2-producing activity could only achieve less than 50% of the boosting effect achieved by MtAA16A, and earlier MtLPMO9B inactivation (6 h) was observed. To explain these results, we hypothesized that the delivery of AA16-produced H2O2 to the MtLPMO9s is facilitated by protein-protein interaction. Our findings provide new insights into the functions of copper-dependent enzymes and contribute to a further understanding of the interplay of oxidative enzymes within fungal systems to degrade lignocellulose.

3.
J Chem Inf Model ; 62(22): 5513-5524, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36326605

RESUMO

An "imaginary transition structure" overlays the molecular graphs of the educt and product sides of an elementary chemical reaction in a single graph to highlight the changes in bond structure. We generalize this idea to reactions with complex mechanisms in a formally rigorous approach based on composing arrow-pushing steps represented as graph-transformation rules to construct an overall composite rule and a derived transition structure. This transition structure retains information about transient bond changes that are invisible at the overall level and can be constructed automatically from an existing database of detailed enzymatic mechanisms. We use the construction to (i) illuminate the distribution of catalytic action across enzymes and substrates and (ii) to search in a large database for reactions of known or unknown mechanisms that are compatible with the mechanism captured by the constructed composite rule.


Assuntos
Catálise , Bases de Dados Factuais
4.
ChemSusChem ; 15(2): e202102203, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34859958

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) play a key role in enzymatic degradation of hard-to-convert polysaccharides, such as chitin and cellulose. It is widely accepted that LPMOs catalyze a single regioselective oxidation of the C1 or C4 carbon of a glycosidic linkage, after which the destabilized linkage breaks. Here, a series of novel C4/C6 double oxidized cello-oligosaccharides was discovered. Products were characterized, aided by sodium borodeuteride reduction and hydrophilic interaction chromatography coupled to mass spectrometric analysis. The C4/C6 double oxidized products were generated by C4 and C1/C4 oxidizing LPMOs, but not by C1 oxidizing ones. By performing incubation and reduction in H2 18 O, it was confirmed that the C6 gem-diol structure resulted from oxygenation, although oxidation to a C6 aldehyde, followed by hydration to the C6 gem-diol, could not be excluded. These findings can be extended to how the reactive LPMO-cosubstrate complex is positioned towards the substrate.


Assuntos
Celulose , Oxigenases de Função Mista , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Oligossacarídeos , Oxirredução , Polissacarídeos
5.
ACS Sustain Chem Eng ; 9(42): 14124-14133, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34722005

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are essential for enzymatic conversion of lignocellulose-rich biomass in the context of biofuels and platform chemicals production. Considerable insight into the mode of action of LPMOs has been obtained, but research on the cellulose specificity of these enzymes is still limited. Hence, we studied the product profiles of four fungal Auxiliary Activity family 9 (AA9) LPMOs during their oxidative cleavage of three types of cellulose: bacterial cellulose (BC), Avicel PH-101 (AVI), and regenerated amorphous cellulose (RAC). We observed that attachment of a carbohydrate-binding module 1 (CBM1) did not change the substrate specificity of LPMO9B from Myceliophthora thermophila C1 (MtLPMO9B) but stimulated the degradation of all three types of cellulose. A detailed quantification of oxidized ends in both soluble and insoluble fractions, as well as characterization of oxidized cello-oligosaccharide patterns, suggested that MtLPMO9B generates mainly oxidized cellobiose from BC, while producing oxidized cello-oligosaccharides from AVI and RAC ranged more randomly from DP2-8. Comparable product profiles, resulting from BC, AVI, and RAC oxidation, were found for three other AA9 LPMOs. These distinct cleavage profiles highlight cellulose specificity rather than an LPMO-dependent mechanism and may further reflect that the product profiles of AA9 LPMOs are modulated by different cellulose types.

6.
Bioinformatics ; 37(Suppl_1): i392-i400, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252947

RESUMO

MOTIVATION: The design of enzymes is as challenging as it is consequential for making chemical synthesis in medical and industrial applications more efficient, cost-effective and environmentally friendly. While several aspects of this complex problem are computationally assisted, the drafting of catalytic mechanisms, i.e. the specification of the chemical steps-and hence intermediate states-that the enzyme is meant to implement, is largely left to human expertise. The ability to capture specific chemistries of multistep catalysis in a fashion that enables its computational construction and design is therefore highly desirable and would equally impact the elucidation of existing enzymatic reactions whose mechanisms are unknown. RESULTS: We use the mathematical framework of graph transformation to express the distinction between rules and reactions in chemistry. We derive about 1000 rules for amino acid side chain chemistry from the M-CSA database, a curated repository of enzymatic mechanisms. Using graph transformation, we are able to propose hundreds of hypothetical catalytic mechanisms for a large number of unrelated reactions in the Rhea database. We analyze these mechanisms to find that they combine in chemically sound fashion individual steps from a variety of known multistep mechanisms, showing that plausible novel mechanisms for catalysis can be constructed computationally. AVAILABILITY AND IMPLEMENTATION: The source code of the initial prototype of our approach is available at https://github.com/Nojgaard/mechsearch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Bases de Dados Factuais , Expressão Gênica , Humanos
7.
ACS Catal ; 11(2): 517-532, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33489432

RESUMO

The natural function of cellobiose dehydrogenase (CDH) to donate electrons from its catalytic flavodehydrogenase (DH) domain via its cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO) is an example of a highly efficient extracellular electron transfer chain. To investigate the function of the CYT domain movement in the two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain swapping were studied in combination with the fungus' own LPMOs (NcLPMO9C and NcLPMO9F). Kinetic and electrochemical methods and hydrogen/deuterium exchange mass spectrometry were used to study the domain movement, interaction, and electron transfer kinetics. Molecular docking provided insights into the protein-protein interface, the orientation of domains, and binding energies. We find that the first, interdomain electron transfer step from the catalytic site in the DH domain to the CYT domain depends on steric and electrostatic interface complementarity and the length of the protein linker between both domains but not on the redox potential difference between the FAD and heme b cofactors. After CYT reduction, a conformational change of CDH from its closed state to an open state allows the second, interprotein electron transfer (IPET) step from CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface complementarity and the heme b redox potential, is very efficient with bimolecular rates between 2.9 × 105 and 1.1 × 106 M-1 s-1.

8.
Biotechnol Biofuels ; 13: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514307

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave plant cell wall polysaccharides. LPMOs classified as fungal Auxiliary Activities family 9 (AA9) have been mainly studied for their activity towards cellulose; however, various members of this AA9 family have been also shown to oxidatively cleave hemicelluloses, in particularly xyloglucan (XG). So far, it has not been studied in detail how various AA9 LPMOs act in XG degradation, and in particular, how the mode-of-action relates to the structural configuration of these LPMOs. RESULTS: Two Neurospora crassa (Nc) LPMOs were found to represent different mode-of-action towards XG. Interestingly, the configuration of active site segments of these LPMOs differed as well, with a shorter Segment 1 (-Seg1) and a longer Segment 2 (+Seg2) present in NcLPMO9C and the opposite for NcLPMO9M (+Seg1-Seg2). We confirmed that NcLPMO9C cleaved the non-reducing end of unbranched glucosyl residues within XG via the oxidation of the C4-carbon. In contrast, we found that the oxidative cleavage of the XG backbone by NcLPMO9M occurred next to both unbranched and substituted glucosyl residues. The latter are decorated with xylosyl, xylosyl-galactosyl and xylosyl-galactosyl-fucosyl units. The relationship between active site segments and the mode-of-action of these NcLPMOs was rationalized by a structure-based phylogenetic analysis of fungal AA9 LPMOs. LPMOs with a -Seg1+Seg2 configuration clustered together and appear to have a similar XG substitution-intolerant cleavage pattern. LPMOs with the +Seg1-Seg2 configuration also clustered together and are reported to display a XG substitution-tolerant cleavage pattern. A third cluster contained LPMOs with a -Seg1-Seg2 configuration and no oxidative XG activity. CONCLUSIONS: The detailed characterization of XG degradation products released by LPMOs reveal a correlation between the configuration of active site segments and mode-of-action of LPMOs. In particular, oxidative XG-active LPMOs, which are tolerant and intolerant to XG substitutions are structurally and phylogenetically distinguished from XG-inactive LPMOs. This study contributes to a better understanding of the structure-function relationship of AA9 LPMOs.

9.
ACS Catal ; 10(9): 4842-4853, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32382450

RESUMO

Large-scale protein domain dynamics and electron transfer are often associated. However, as protein motions span a broad range of time and length scales, it is often challenging to identify and thus link functionally relevant dynamic changes to electron transfer in proteins. It is hypothesized that large-scale domain motions direct electrons through a FAD and a heme b cofactor of the fungal cellobiose dehydrogenase (CDH) enzymes to the type-II copper center (T2Cu) of the polysaccharide-degrading lytic polysaccharide monooxygenases (LPMOs). However, as of yet, domain motions in CDH have not been linked formally to enzyme-catalyzed electron transfer reactions. The detailed structural features of CDH, which govern the functional conformational landscapes of the enzyme, have only been partially resolved. Here, we use a combination of pressure, viscosity, ionic strength, and temperature perturbation stopped-flow studies to probe the conformational landscape associated with the electron transfer reactions of CDH. Through the use of molecular dynamics simulations, potentiometry, and stopped-flow spectroscopy, we investigated how a conserved Tyr99 residue plays a key role in shaping the conformational landscapes for both the interdomain electron transfer reactions of CDH (from FAD to heme) and the delivery of electrons from the reduced heme cofactor to the LPMO T2Cu. Our studies show how motions gate the electron transfer within CDH and from CDH to LPMO and illustrate the conformational landscape for interdomain and interprotein electron transfer in this extracellular fungal electron transfer chain.

10.
Biomolecules ; 10(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033404

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are industrially important oxidoreductases employed in lignocellulose saccharification. Using advanced time-resolved mass spectrometric techniques, we elucidated the structural determinants for substrate-mediated stabilization of the fungal LPMO9C from Neurosporacrassa during catalysis. LPMOs require a reduction in the active-site copper for catalytic activity. We show that copper reduction in NcLPMO9C leads to structural rearrangements and compaction around the active site. However, longer exposure to the reducing agent ascorbic acid also initiated an uncoupling reaction of the bound oxygen species, leading to oxidative damage, partial unfolding, and even fragmentation of NcLPMO9C. Interestingly, no changes in the hydrogen/deuterium exchange rate were detected upon incubation of oxidized or reduced LPMO with crystalline cellulose, indicating that the LPMO-substrate interactions are mainly side-chain mediated and neither affect intraprotein hydrogen bonding nor induce significant shielding of the protein surface. On the other hand, we observed a protective effect of the substrate, which slowed down the autooxidative damage induced by the uncoupling reaction. These observations further complement the picture of structural changes during LPMO catalysis.


Assuntos
Cobre/química , Oxigenases de Função Mista/química , Neurospora crassa/enzimologia , Oxigênio/química , Polissacarídeos/química , Catálise , Domínio Catalítico , Celulose/química , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Lignina/química , Espectrometria de Massas , Estresse Oxidativo , Oxirredutases/química , Ligação Proteica , Conformação Proteica , Espécies Reativas de Oxigênio/química , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
11.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835532

RESUMO

In past years, new lytic polysaccharide monooxygenases (LPMOs) have been discovered as distinct in their substrate specificity. Their unconventional, surface-exposed catalytic sites determine their enzymatic activities, while binding sites govern substrate recognition and regioselectivity. An additional factor influencing activity is the presence or absence of a family 1 carbohydrate binding module (CBM1) connected via a linker to the C-terminus of the LPMO. This study investigates the changes in activity induced by shortening the second active site segment (Seg2) or removing the CBM1 from Neurospora crassa LPMO9C. NcLPMO9C and generated variants have been tested on regenerated amorphous cellulose (RAC), carboxymethyl cellulose (CMC) and xyloglucan (XG) using activity assays, conversion experiments and surface plasmon resonance spectroscopy. The absence of CBM1 reduced the binding affinity and activity of NcLPMO9C, but did not affect its regioselectivity. The linker was found important for the thermal stability of NcLPMO9C and the CBM1 is necessary for efficient binding to RAC. Wild-type NcLPMO9C exhibited the highest activity and strongest substrate binding. Shortening of Seg2 greatly reduced the activity on RAC and CMC and completely abolished the activity on XG. This demonstrates that Seg2 is indispensable for substrate recognition and the formation of productive enzyme-substrate complexes.


Assuntos
Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Sítios de Ligação , Carboximetilcelulose Sódica/metabolismo , Domínio Catalítico , Celulose/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Oxigenases de Função Mista/genética , Neurospora crassa/genética , Deleção de Sequência , Ressonância de Plasmônio de Superfície , Xilanos/metabolismo
12.
J Inorg Biochem ; 199: 110761, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325671

RESUMO

With >5000 annotated genes dye-decolorizing peroxidases (DyPs) represent a heme b peroxidase family of broad functional diversity. Bacterial B-class DyPs are poor peroxidases of unknown physiological function. Hydrogen peroxide efficiently mediates the rapid formation of Compound I in B-class DyPs, which, however, is stable and shows modest reactivity towards organic and inorganic electron donors. To understand these characteristics, we have investigated the redox thermodynamics of the one-electron reduction of the ferric high-spin form of wild-type B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) and the variants D143A, R232A and D143A/R232A. These distal amino acids are fully conserved in all DyPs and play important roles in Compound I formation and maintenance of the heme cavity architecture and substrate access route(s). The E°' values of the respective redox couples Fe(III)/Fe(II) varied from -350 mV (wild-type KpDyP) to -299 mV (D143A/R232A) at pH 7.0. Variable-temperature spectroelectrochemical experiments revealed that the reduction reaction of B-class DyPs is enthalpically unfavored but entropically favored with significant differences in enthalpic and entropic contributions to E°' between the four proteins. Molecular dynamics simulations demonstrated the impact of solvent reorganization on the entropy change during reduction reaction and revealed the dynamics and restriction of substrate access channels. Obtained data are discussed with respect to the poor peroxidase activities of B-class DyPs and compared with heme peroxidases from other (super)families as well as with chlorite dismutases, which do not react with hydrogen peroxide but share a similar fold and heme cavity architecture.


Assuntos
Peroxidases/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Eletroquímica , Simulação de Dinâmica Molecular , Oxirredução , Peroxidases/química , Filogenia , Termodinâmica
13.
Biochemistry ; 58(9): 1226-1235, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715860

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are ubiquitous oxidoreductases, facilitating the degradation of polymeric carbohydrates in biomass. Cellobiose dehydrogenase (CDH) is a biologically relevant electron donor in this process, with the electrons resulting from cellobiose oxidation being shuttled from the CDH dehydrogenase domain to its cytochrome domain and then to the LPMO catalytic site. In this work, we investigate the interaction of four Neurospora crassa LPMOs and five CDH cytochrome domains from different species using computational methods. We used HADDOCK to perform protein-protein docking experiments on all 20 combinations and subsequently to select four complexes for extensive molecular dynamics simulations. The potential of mean force is computed for a rotation of the cytochrome domain relative to LPMO. We find that the LPMO loops are largely responsible for the preferred orientations of the cytochrome domains. This leads us to postulate a hybrid version of NcLPMO9F, with exchanged loops and predicted altered cytochrome binding preferences for this variant. Our work provides insight into the possible mechanisms of electron transfer between the two protein systems, in agreement with and complementary to previously published experimental data.


Assuntos
Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Domínio Catalítico , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurospora crassa/enzimologia , Domínios e Motivos de Interação entre Proteínas
14.
Appl Microbiol Biotechnol ; 102(6): 2477-2492, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29411063

RESUMO

The CAZy auxiliary activity family 3 (AA3) comprises enzymes from the glucose-methanol-choline (GMC) family of oxidoreductases, which assist the activity of other AA family enzymes via their reaction products or support the action of glycoside hydrolases in lignocellulose degradation. The AA3 family is further divided into four subfamilies, which include cellobiose dehydrogenase, glucose oxidoreductases, aryl-alcohol oxidase, alcohol (methanol) oxidase, and pyranose oxidoreductases. These different enzymes catalyze a wide variety of redox reactions with respect to substrates and co-substrates. The common feature of AA3 family members is the formation of key metabolites such as H2O2 or hydroquinones, which are required by other AA enzymes. The multiplicity of enzymatic functions in the AA3 family is reflected by the multigenicity of AA3 genes in fungi, which also depends on their lifestyle. We provide an overview of the phylogenetic, molecular, and catalytic properties of AA3 enzymes and discuss their interactions with other carbohydrate-active enzymes.


Assuntos
Fungos/enzimologia , Lignina/metabolismo , Oxirredutases/metabolismo , Biotransformação , Fungos/genética , Peróxido de Hidrogênio/metabolismo , Hidroquinonas/metabolismo , Oxirredutases/genética , Filogenia , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA