Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Math Biol ; 79(6-7): 2111-2132, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515603

RESUMO

Melanoblast migration is important for embryogenesis and is a key feature of melanoma metastasis. Many studies have characterized melanoblast movement, focusing on statistical properties and have highlighted basic mechanisms of melanoblast motility. We took a slightly different and complementary approach: we previously developed a mathematical model of melanoblast motion that enables the testing of biological assumptions about the displacement of melanoblasts and we created tests to analyze the geometric features of cell trajectories and the specific issue of trajectory interactions. Within this model, we performed simulations and compared the results with experimental data using geometric tests. In this paper, we developed the associated mathematical model and the main focus is to study the crossings between trajectories with new theoretical results about the variation of number of intersection points with respect to the crossing times. Using these results it is possible to study the random nature of displacements and the interactions between trajectories. This analysis has raised new questions, leading to the generation of strong arguments in favor of a trail left behind each moving melanoblast.


Assuntos
Movimento Celular/fisiologia , Melanócitos/fisiologia , Modelos Biológicos , Células-Tronco/fisiologia , Diferenciação Celular , Desenvolvimento Embrionário/fisiologia , Humanos , Queratinócitos/fisiologia , Melanoma/secundário , Neoplasias Cutâneas/patologia
2.
Development ; 145(12)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29769218

RESUMO

To distribute and establish the melanocyte lineage throughout the skin and other developing organs, melanoblasts undergo several rounds of proliferation, accompanied by migration through complex environments and differentiation. Melanoblast migration requires interaction with extracellular matrix of the epidermal basement membrane and with surrounding keratinocytes in the developing skin. Migration has been characterized by measuring speed, trajectory and directionality of movement, but there are many unanswered questions about what motivates and defines melanoblast migration. Here, we have established a general mathematical model to simulate the movement of melanoblasts in the epidermis based on biological data, assumptions and hypotheses. Comparisons between experimental data and computer simulations reinforce some biological assumptions, and suggest new ideas for how melanoblasts and keratinocytes might influence each other during development. For example, it appears that melanoblasts instruct each other to allow a homogeneous distribution in the tissue and that keratinocytes may attract melanoblasts until one is stably attached to them. Our model reveals new features of how melanoblasts move and, in particular, suggest that melanoblasts leave a repulsive trail behind them as they move through the skin.


Assuntos
Movimento Celular/fisiologia , Simulação por Computador , Queratinócitos/metabolismo , Melanócitos/citologia , Pele/embriologia , Animais , Membrana Basal/metabolismo , Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Melanócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Teóricos
3.
J Math Biol ; 70(3): 533-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24623311

RESUMO

We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.


Assuntos
Modelos Biológicos , Plantas/efeitos da radiação , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/efeitos da radiação , Luz , Conceitos Matemáticos , Fototropismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA