Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Pathol Lab Med ; 147(11): 1234-1240, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538384

RESUMO

CONTEXT.­: The COVID-19 pandemic has triggered a worldwide crisis that created unprecedented challenges for the health care system, including diagnostic laboratories that faced an ever-increasing demand for SARS-CoV-2 testing. OBJECTIVE.­: To share our experiences mobilizing a large-scale volunteer operation within a diagnostic laboratory in response to the COVID-19 crisis. In particular, during the early stages of the pandemic, research scientists at Vanderbilt University Medical Center were called upon to address challenges put forth by the rapid increase in testing demands. Volunteer scientists became a valuable resource to the clinical laboratory team after stay-at-home orders were in place and rapid diagnostic capabilities for COVID-19 were not yet widespread, thus necessitating significant manual laboratory analysis to support patient care. However, these volunteer efforts were not without challenges, including considerations around the licensure of clinical laboratory workers. Requirements can differ significantly between states and, in our case, were alleviated by an emergency gubernatorial decree. DATA SOURCES.­: We summarize these experiences here as an operational roadmap for other institutions that wish to leverage biomedical research staff in response to future emergencies. We include recruitment and organizational schemes, as well as results of a survey that details participant experiences and identifies strategies for optimization. Lastly, we present considerations around long-term hosting of clinical laboratory volunteers, beyond just the initial stages of an emergency. CONCLUSIONS.­: Through strategic implementation, scientists can provide diagnostic laboratories with invaluable support in times of need, while maintaining high clinical quality and regulatory compliance.

2.
Nature ; 611(7937): 780-786, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36385534

RESUMO

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Assuntos
Clostridioides difficile , Enterococcus , Interações Microbianas , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Arginina/deficiência , Arginina/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Clostridioides difficile/fisiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Enterococcus/efeitos dos fármacos , Enterococcus/metabolismo , Enterococcus/patogenicidade , Enterococcus/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/microbiologia , Leucina/metabolismo , Ornitina/metabolismo , Virulência , Suscetibilidade a Doenças
3.
Nat Commun ; 13(1): 1491, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314695

RESUMO

HitRS is a two-component system that responds to cell envelope damage in the human pathogen Bacillus anthracis. Here we identify an RNA-binding protein, KrrA, that regulates HitRS function by modulating the stability of the hitRS mRNA. In addition to hitRS, KrrA binds to over 70 RNAs and, directly or indirectly, affects the expression of over 150 genes involved in multiple processes, including genetic competence, sporulation, RNA turnover, DNA repair, transport, and cellular metabolism. KrrA does not exhibit detectable nuclease activity in vitro, and thus the mechanism by which it modulates mRNA stability remains unclear.


Assuntos
Bacillus anthracis , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Infect Immun ; 90(1): e0056021, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34748369

RESUMO

Bacillus anthracis is the causative agent of anthrax. This Gram-positive bacterium poses a substantial risk to human health due to high mortality rates and the potential for malicious use as a bioterror weapon. To survive within the vertebrate host, B. anthracis relies on two-component system (TCS) signaling to sense host-induced stresses and respond to alterations in the environment through changes in target gene expression. HitRS and HssRS are cross-regulating TCSs in B. anthracis that respond to cell envelope disruptions and high heme levels, respectively. In this study, an unbiased and targeted genetic selection was designed to identify gene products that are involved in HitRS and HssRS signaling. This selection led to the identification of inactivating mutations within dnaJ and clpX that disrupt HitRS- and HssRS-dependent gene expression. DnaJ and ClpX are the substrate-binding subunits of the DnaJK protein chaperone and ClpXP protease, respectively. DnaJ regulates the levels of HitR and HitS to facilitate signal transduction, while ClpX specifically regulates HitS levels. Together, these results reveal that the protein homeostasis regulators, DnaJ and ClpX, function to maintain B. anthracis signal transduction activities through TCS regulation.


Assuntos
Antraz/microbiologia , Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Transdução de Sinais , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Transporte Proteico , Seleção Genética
5.
Antimicrob Agents Chemother ; 65(12): e0091921, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516248

RESUMO

Staphylococcus aureus is a serious threat to public health due to the rise of antibiotic resistance in this organism, which can prolong or exacerbate skin and soft tissue infections (SSTIs). Methicillin-resistant S. aureus is a Gram-positive bacterium and a leading cause of SSTIs. As such, many efforts are under way to develop therapies that target essential biological processes in S. aureus. Antimicrobial photodynamic therapy is an effective alternative to antibiotics; therefore we developed an approach to simultaneously expose S. aureus to intracellular and extracellular photosensitizers. A near infrared photosensitizer was conjugated to human monoclonal antibodies (MAbs) that target the S. aureus iron-regulated surface determinant (Isd) heme acquisition proteins. In addition, the compound VU0038882 was developed to increase photoactivatable porphyrins within the cell. Combinatorial photodynamic treatment of drug-resistant S. aureus exposed to VU0038882 and conjugated anti-Isd MAbs proved to be an effective antibacterial strategy in vitro and in a murine model of SSTIs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
6.
mBio ; 11(2)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234818

RESUMO

Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Cardiolipinas/biossíntese , Quinazolinas/farmacologia , Triazóis/farmacologia , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Transcrição Gênica
7.
Virulence ; 8(6): 924-937, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27791478

RESUMO

Group B Streptococcus (GBS), a leading cause of neonatal sepsis and meningitis, asymptomatically colonizes up to 30% of women and can persistently colonize even after antibiotic treatment. Previous studies have shown that GBS resides inside macrophages, but the mechanism by which it survives remains unknown. Here, we examined the ability of 4 GBS strains to survive inside macrophages and then focused on 2 strains belonging to sequence type (ST)-17 and ST-12, to examine persistence in the presence of antibiotics. A multiple stress medium was also developed using several stressors found in the phagosome to assess the ability of 30 GBS strains to withstand phagosomal stress. The ST-17 strain was more readily phagocytosed and survived intracellularly longer than the ST-12 strain, but the ST-12 strain was tolerant to ampicillin unlike the ST-17 strain. Exposure to sub-inhibitory concentrations of ampicillin and erythromycin increased the level of phagocytosis of the ST-17 strain, but had no effect on the ST-12 strain. In addition, blocking acidification of the phagosome decreased the survival of the ST-17 strain indicating a pH-dependent survival mechanism for the ST-17 strain. Congruent with the macrophage experiments, the ST-17 strain had a higher survival rate in the multiple stress medium than the ST-12 strain, and overall, serotype III isolates survived significantly better than other serotypes. These results indicate that diverse GBS strains may use differing mechanisms to persist and that serotype III strains are better able to survive specific stressors inside the phagosome relative to other serotypes.


Assuntos
Macrófagos/microbiologia , Fagossomos/microbiologia , Streptococcus agalactiae/patogenicidade , Estresse Fisiológico , Adulto , Antibacterianos/farmacologia , Genótipo , Humanos , Macrófagos/efeitos dos fármacos , Fagocitose , Fagossomos/efeitos dos fármacos , Sorogrupo , Sorotipagem , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/genética , Células THP-1 , Fatores de Virulência/genética
8.
BMC Microbiol ; 16: 86, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27206613

RESUMO

BACKGROUND: Group B Streptococcus (GBS) is a leading cause of sepsis and meningitis and an important factor in premature and stillbirths. Biofilm production has been suggested to be important for GBS pathogenesis alongside many other elements, including phylogenetic lineage and virulence factors, such as pili and capsule type. A complete understanding of the confluence of these components, however, is lacking. To identify associations between biofilm phenotype, pilus profile and lineage, 293 strains from asymptomatic carriers, invasive disease cases, and bovine mastitis cases, were assessed for biofilm production using an in vitro assay. RESULTS: Multilocus sequence type (ST) profile, pilus island profile, and isolate source were associated with biofilm production. Strains from invasive disease cases and/or belonging to the ST-17 and ST-19 lineages were significantly more likely to form weak biofilms, whereas strains producing strong biofilms were recovered more frequently from individuals with asymptomatic colonization. CONCLUSIONS: These data suggest that biofilm production is a lineage-specific trait in GBS and may promote colonization of strains representing lineages other than STs 17 and 19. The findings herein also demonstrate that biofilms must be considered in the treatment of pregnant women, particularly for women with heavy GBS colonization.


Assuntos
Biofilmes , Tipagem de Sequências Multilocus/métodos , Streptococcus agalactiae/classificação , Streptococcus agalactiae/fisiologia , Animais , Proteínas de Bactérias/genética , Bovinos , Fímbrias Bacterianas/genética , Variação Genética , Genótipo , Humanos , Filogenia , Streptococcus agalactiae/isolamento & purificação , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA