Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Cell Environ ; 46(3): 889-900, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541420

RESUMO

In forests, mycorrhizal fungi regulate carbon (C) and nitrogen (N) dynamics. We evaluated the interplay among ectomycorrhizas (ECM), ecosystem C fluxes, tree productivity, C and N exchange and isotopic fractionation along the soil-ECM-plant continuum in a Mediterranean beech forest. From bud break to leaf shedding, we monitored: net ecosystem exchange (NEE, a measure of the net exchange of C between an ecosystem and the atmosphere), leaf area index, stem growth, N concentration, δ13 C and δ15 N in rhizosphere soil, ectomycorrhizal fine root tips (ERT), ECM-free fine root portions (NCR) and leaves. Seasonal changes in ERT relative biomass were strictly related to NEE and mimicked those detected in the radial growth. The analysis of δ13 C in ERT, leaves and NCR highlighted the impact of canopy photosynthesis on ERT development and an asynchronous seasonal C allocation strategy between ERT and NCR at the root tips level. Concerning N, δ15 N of leaves was negatively related to that of ERT and dependent on seasonal 15 N differences between ERT and NCR. Our results unravel a synchronous C allocation towards ERT and tree stem driven by the increasing NEE in spring-early summer. Moreover, they highlighted a phenology-dependent 15 N fractionation during N transfer from ECM to their hosts. This evidence, obtained in mature beech trees under natural conditions, may improve the knowledge of Mediterranean forests functionality.


Assuntos
Fagus , Micorrizas , Carbono , Nitrogênio , Ecossistema , Dióxido de Carbono , Florestas , Árvores/fisiologia , Isótopos , Solo
2.
Sci Rep ; 10(1): 7673, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376838

RESUMO

Olive tree is a vector of cultural heritage in Mediterranean. This study explored the biocultural geography of extra virgin olive oil (EVOO) from the cultivar Ogliarola campana in Campania region, Italy. Here, the rich cultural elements related to olive tree and oil represent a suitable case study for a biocultural analysis. We joined analytical techniques, based on stable isotopes and trace elements of EVOOs, with humanistic analyses, based on toponymy and historical data. In order to provide a science-based assessment of the terroir concept, we set up a new method of data analysis that inputs heterogeneous data from analytical and anthropic variables and outputs an original global evaluation score, named terroir score, as a measure of biocultural distinctiveness of the production areas. The analysis highlighted two distinct cultural sub-regions in the production area of Ogliarola campana: a continental cluster in the inner area of Irpinia and a coastal one around Salerno province. Finally, a biocultural map displays the diversity of heterogeneous variables and may support science-based decision making for territory valorisation. This novel biocultural analysis is a promising approach to substantiate the terroir concept with science-based elements and appears suitable to characterize local agri-food products with old tradition and historical data.


Assuntos
Olea , Meio Ambiente , Geografia , Itália , Olea/química , Olea/classificação , Azeite de Oliva/química , Óleos de Plantas/química
3.
Environ Monit Assess ; 190(12): 742, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30465266

RESUMO

Environment of Ghannouch in the south-east of Tunisia is characterized by the wide-spread hypersaline soils, typically colonized by halophytes. The study of their distribution is required in order to reveal the extent of salinization and its dynamic. Mapping and monitoring with a remote sensing approach are foreseen as the ways to trace the spatial and temporal dimensions of the phenomenon. The identification of halophyte vegetation can take advantage by analyzing optical remote sensing data. Here, we propose using a decision tree approach applied to European Space Agency Sentinel-2 imagery, for an accurate land cover mapping of Ghannouch district in Gabès governorate. Data pre-processing was carried out using the European Space Agency's Sentinel Application Platform and the SEN2COR toolboxes. The mapping approach combines the spectral information in several channels of the visible-near-infrared spectrum. The land cover identification was performed following a spectral classification approach, exploiting several optical indices, normalized difference water index, normalized difference vegetation index, and several soil salinity index, in order to elaborate a decision tree algorithm. As a result, for an area of interest of 50 × 50 km2, at least 68% was classified as halophyte land cover. This mapping exercise represents an important step toward improved halophytes mapping in Tunisia and could be used to monitor the status of other salinity prone regions in the world.


Assuntos
Árvores de Decisões , Monitoramento Ambiental/métodos , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Imagens de Satélites/métodos , Meio Ambiente , Salinidade , Solo/química , Tunísia , Água/química
4.
Tree Physiol ; 38(8): 1110-1126, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579292

RESUMO

Beech is one of the most important forest tree species in Europe, hence possible adverse factors affecting its physiology and productivity can have strong ecological and economic impacts. In this context, four beech forests along a latitudinal gradient from southern Apennines to middle European lowlands were selected for chronological determinations of carbon isotope composition (δ13C) in tree-ring cellulose. The main objectives of this study were to assess (i) the effect of climate on the carbon signature of tree-ring cellulose (δ13C); (ii) the physiological response to recent CO2 concentration increment and to climatic variation; and (iii) the relationship between intrinsic water-use efficiency (iWUE, here the average long-term ratio of net photosynthesis to stomatal conductance) and growth of trees in different sites since 1950. Our results demonstrated that site climatic conditions peculiarly affect δ13C. In northern sites, a climatic control of summer precipitation and temperature on stomatal conductance was demonstrated by their opposite correlations with δ13C, negative and positive, respectively. Furthermore, an 'earliness effect' was suggested by a significant relationship between spring temperature and δ13C in the coldest sites and by a positive one between winter temperature and δ13C in the warmest ones. In all the study sites, during the maturity phase, a positive correlation between the increment of CO2 and iWUE was observed, due to an active response of trees to CO2 increment. This increment of CO2 was the main driver of the long term increasing trend of iWUE, resulting by an active response of trees to CO2 fertilization. Moreover, precipitation mostly influences positively and negatively the inter-annual variations of iWUE of the southernmost and northernmost sites, respectively. Overall, we observed a mean increment of 40% of iWUE. Moreover, the sensitivity of iWUE to the increase of CO2 was different between the northernmost and southernmost sites. Increasing iWUE was correlated to growth in the two sites during the release phase and we hypothesize a positive effect of silvicultural treatments.


Assuntos
Dióxido de Carbono/análise , Mudança Climática , Fagus/metabolismo , Agricultura Florestal , Água/metabolismo , Isótopos de Carbono/análise , Celulose/química , Clima , Fagus/crescimento & desenvolvimento , Geografia , Alemanha , Itália , Madeira/química
5.
PLoS One ; 12(8): e0183333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28817721

RESUMO

The use of isotopic signatures in animal tissues provides information on the environment where they are living and, notably, on their diet. Carbon and, whenever possible, nitrogen stable isotope analyses were performed in animal hairs, muscles and fat. Particularly, we analyzed both carbon and nitrogen isotopic compositions (δ13C and δ15N) on wild boar samples across three different areas of central Italy (Latium region): Tyrrhenian Coast (TC), Maremma (MA) and Central Plains (CP). The agricultural habits of these areas imply that, in winter, no crops are available for wild boars, which feed mainly on acorns and natural feeds (tubers, earthworms etc.). In addition, the three areas were influenced by oak masting. One of these areas (CP) was characterised by the spreading of corn during the hunting season to attract the animals. For each area, we sampled 10 animals aged between 12 and 24 months and balanced by gender. Anenrichment of δ13C in CP area, where corn was used, was observed in all the analysed tissues in comparison to other areas (MA and TC). In CP area, enriched values of δ15N were also observed in all the tissues. The research demonstrates that both δ13C andδ15N in free-living wild boar tissues are influenced by sampling area. According to feeding habits of the species and wildlife management (feed supplementation), the differences observed in δ13C and δ15Nare based on the specific feeding regime; particularly the use of corn in wintertime. Furthermore, the research highlights and discusses diversities and relationships among δ13C and δ15N in the hair, fat and muscles of free-living wild boar.


Assuntos
Isótopos de Carbono/metabolismo , Isótopos de Nitrogênio/metabolismo , Sus scrofa , Animais , Itália
6.
Sci Total Environ ; 607-608: 954-964, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28724227

RESUMO

Rising atmospheric CO2 causes ocean acidification that represents one of the major ecological threats for marine biota. We tested the hypothesis that long-term exposure to increased CO2 level and acidification in a natural CO2 vent system alters carbon (C) and nitrogen (N) metabolism in Posidonia oceanica L. (Delile), affecting its resilience, or capability to restore the physiological homeostasis, and the nutritional quality of organic matter available for grazers. Seawater acidification decreased the C to N ratio in P. oceanica tissues and increased grazing rate, shoot density, leaf proteins and asparagine accumulation in rhizomes, while the maximum photochemical efficiency of photosystem II was unaffected. The 13C-dilution in both structural and non-structural C metabolites in the acidified site indicated quali-quantitative changes of C source and/or increased isotopic fractionation during C uptake and carboxylation associated with the higher CO2 level. The decreased C:N ratio in the acidified site suggests an increased N availability, leading to a greater storage of 15N-enriched compounds in rhizomes. The amount of the more dynamic C storage form, sucrose, decreased in rhizomes of the acidified site in response to the enhanced energy demand due to higher shoot recruitment and N compound synthesis, without affecting starch reserves. The ability to modulate the balance between stable and dynamic C reserves could represent a key ecophysiological mechanism for P. oceanica resilience under environmental perturbation. Finally, alteration in C and N dynamics promoted a positive contribution of this seagrass to the local food web.

7.
Front Plant Sci ; 8: 276, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303146

RESUMO

The argan tree (Argania spinosa) occurs in a restricted area of Southwestern Morocco characterized by low water availability and high evapotranspirative demand. Despite the adaptation of the argan tree to drought stress, the extent of the argan forest has declined markedly due to increased aridity, land use changes and the expansion of olive cultivation. The oil of the argan seed is used for cooking and as the basis for numerous cosmetics. The identification of argan tree varieties with enhanced drought tolerance may minimize the economic losses associated with the decline of the argan forest and constrain the spread of desertification. In this study we collected argan ecotypes from four contrasting habitats and grew them under identical controlled environment conditions to investigate their response to drought. Leaf gas exchange analysis indicated that the argan ecotypes showed a high degree of adaptation to drought stress, maintaining photosynthetic activity at low levels of foliar water content and co-ordinating photosynthesis, stomatal behavior and metabolism. The stomata of the argan trees were highly sensitive to increased leaf to air vapor pressure deficit, representing an adaptation to growth in an arid environment where potential evapotranspiration is high. However, despite originating in contrasting environments, the four argan ecotypes exhibited similar gas exchange characteristics under both fully irrigated and water deficit conditions. Population genetic analyses using microsatellite markers indicated a high degree of relatedness between the four ecotypes; indicative of both artificial selection and the transport of ecotypes between different provinces throughout centuries of management of the argan forest. The majority of genetic variation across the four populations (71%) was observed between individuals, suggesting that improvement of argan is possible. Phenotypic screening of physiological responses to drought may prove effective in identifying individuals and then developing varieties with enhanced drought tolerance to enable the maintenance of argan production as climate change results in more frequent and severe drought events in Northern Africa.

8.
Food Chem ; 202: 291-301, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26920297

RESUMO

The authentication and verification of the geographical origin of food commodities are important topics in the food sector. This study shows the spatial variability in δ(13)C and δ(18)O of 387 samples of Italian extra-virgin olive oil (EVOO) collected from 2009 to 2011. EVOOs' δ(13)C and δ(18)O values were related to GIS (Geographic Information System) layers of source water δ(18)O and climate data (mean monthly temperature and precipitation, altitude, xerothermic index) to evaluate the impact of the most significant large-scale drivers for the isotopic composition of Italian EVOOs. A geospatial model of δ(18)O and δ(13)C was developed for the authentication and verification of the geographical origin of EVOOs. The geospatial model identified EVOOs from four distinct areas: north, south-central Tyrrhenian, central Adriatic and islands, highlighting the zonation of the expected isotopic signatures. This geospatial approach can be used to define a protocol for analyzing the isotopic composition of EVOOs in order to certify their origin and prevent food fraud. Limits and perspectives of the model are discussed.


Assuntos
Isótopos de Carbono/análise , Azeite de Oliva/normas , Isótopos de Oxigênio/análise , Clima , Itália , Azeite de Oliva/análise
9.
PLoS One ; 9(9): e109054, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275452

RESUMO

Global production of rice (Oryza sativa) grain is limited by water availability and the low 'leaf-level' photosynthetic capacity of many cultivars. Oryza sativa is extremely susceptible to water-deficits; therefore, predicted increases in the frequency and duration of drought events, combined with future rises in global temperatures and food demand, necessitate the development of more productive and drought tolerant cultivars. We investigated the underlying physiological, isotopic and morphological responses to water-deficit in seven common varieties of O. sativa, subjected to prolonged drought of varying intensities, for phenotyping purposes in open field conditions. Significant variation was observed in leaf-level photosynthesis rates (A) under both water treatments. Yield and A were influenced by the conductance of the mesophyll layer to CO2 (g(m)) and not by stomatal conductance (g(s)). Mesophyll conductance declined during drought to differing extents among the cultivars; those varieties that maintained g(m) during water-deficit sustained A and yield to a greater extent. However, the variety with the highest g(m) and yield under well-watered conditions (IR55419-04) was distinct from the most effective cultivar under drought (Vandana). Mesophyll conductance most effectively characterises the photosynthetic capacity and yield of O. sativa cultivars under both well-watered and water-deficit conditions; however, the desired attributes of high g(m) during optimal growth conditions and the capacity for g(m) to remain constant during water-deficit may be mutually exclusive. Nonetheless, future genetic and physiological studies aimed at enhancing O. sativa yield and drought stress tolerance should investigate the biochemistry and morphology of the interface between the sub-stomatal pore and mesophyll layer.


Assuntos
Secas , Flores/fisiologia , Oryza/fisiologia , Fotossíntese , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Difusão , Células do Mesofilo/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Água
10.
Oecologia ; 176(2): 581-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085444

RESUMO

Water-use efficiency (WUE), thought to be a relevant trait for productivity and adaptation to water-limited environments, was estimated for three different ecosystems on the Mediterranean island of Pianosa: Mediterranean macchia (SMM), transition (S(TR)) and abandoned agricultural (SAA) ecosystems, representing a successional series. Three independent approaches were used to study WUE: eddy covariance measurements, C isotope composition of ecosystem respired CO2, and C isotope discrimination (Δ) of leaf material (dry matter and soluble sugars). Seasonal variations in C-water relations and energy fluxes, compared in S(MM) and in SAA, were primarily dependent on the specific composition of each plant community. WUE of gross primary productivity was higher in SMM than in SAA at the beginning of the dry season. Both structural and fast-turnover leaf material were, on average, more enriched in (13)C in S(MM) than SAA, indicating relatively higher stomatal control and WUE for the long-lived macchia species. This pattern corresponded to (13)C-enriched respired CO2 in SMM compared to the other ecosystems. Conversely, most of the annual herbaceous SAA species (terophytes) showed a drought-escaping strategy, with relatively high stomatal conductance and low WUE. An ecosystem-integrated Δ value was weighted for each ecosystem on the abundance of different life forms, classified according to Raunkiar's system. Agreement was found between ecosystem WUE calculated using eddy covariance and those estimated using integrated Δ approaches. Comparing the isotopic methods, Δ of leaf soluble sugars provided the most reliable proxy for short-term changes in photosynthetic discrimination and associated shifts in integrated canopy-level WUE along the successional series.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Água , Isótopos de Carbono/análise , Secas , Ilhas , Itália , Região do Mediterrâneo , Fotossíntese , Folhas de Planta/química , Plantas , Estações do Ano
11.
Funct Plant Biol ; 39(3): 199-213, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480774

RESUMO

We investigated the consequences of recurrent winter flooding with saline water on a lemon (Citrus×limon (L.) Burm.f.) orchard, focussing on photosynthesis limitations and emission of secondary metabolites (isoprenoids) from leaves and fruits. Measurements were carried out immediately after flooding (December), at the end of winter (April) and after a dry summer in which plants were irrigated with optimal quality water (September). Photosynthesis was negatively affected by flooding. The effect was still visible at the end of winter, whereas the photosynthetic rate was fully recovered after summer, indicating an unexpected resilience capacity of flooded plants. Photosynthesis inhibition by flooding was not due to diffusive limitations to CO2 entry into the leaf, as indicated by measurements of stomatal conductance and intercellular CO2 concentration. Biochemical and photochemical limitations seemed to play a more important role in limiting the photosynthesis of flooded plants. In young leaves, characterised by high rates of mitochondrial respiration, respiratory rates were enhanced by flooding. Flooding transiently caused large and rapid emission of several volatile isoprenoids. Emission of limonene, the most abundant compound, was stimulated in the leaves, and in young and mature fruits. Flooding changed the blend of emitted isoprenoids, but only few changes were observed in the stored isoprenoids pool.

12.
J Exp Bot ; 60(8): 2325-39, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19443613

RESUMO

Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Folhas de Planta/metabolismo , Água/metabolismo , Fenômenos Biofísicos , Genótipo , Oryza/química , Oryza/metabolismo , Fotossíntese , Folhas de Planta/química , Reprodução
13.
Environ Pollut ; 156(1): 16-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18407388

RESUMO

We present a comment about "Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power" by Dizengremel, Le Thiec, Bagard, and Jolivet. As tools for summarizing plant O(3) sensitivity in simple indices, Dizengremel et al. suggest: reducing power, as antioxidant regeneration through the Halliwell/Asada cycle requires NADPH from the photosynthetic light reaction; Rubisco/PEPc ratio, as an index of the energy balance between anabolic and catabolic reactions; and water-use efficiency as a time-integrated approximation of the carbon gain to stomatal O(3) uptake ratio. The scientific background is solid, and simple enough (although expensive) to be translated into modelling and routine use. In the last decade, several approaches have been developed, mostly by using photosynthesis as a metric of defence. All these approaches should be experimentally tested in different and realistic conditions, before the results are transferred to the field and used in effective O(3) flux modelling and assessment.


Assuntos
Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , Plantas/efeitos dos fármacos , Inativação Metabólica , Oxidantes Fotoquímicos/farmacocinética , Ozônio/farmacocinética , Transpiração Vegetal/efeitos dos fármacos , Plantas/metabolismo , Medição de Risco/métodos , Água/metabolismo
14.
Tree Physiol ; 24(6): 671-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15059767

RESUMO

We studied the effects of three nitrogen (N) supply rates (low, intermediate and high) on Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings and poplar clone "I-214" (Populus x euroamericana (Dole) Guinier) cuttings growing in mini-stands. Our specific objectives were to: (1) evaluate the effects of N supply on water-use efficiency (WUE) and biomass production; (2) determine if N affects WUE through control of carbon assimilation rates or through stomatal control of water loss; and (3) compare three methods of estimating WUE: one short-term method (WUE(i), based on gas exchange measurements) and two long-term methods (WUE(T), based on the ratio between biomass production and transpired water, and Delta, based on leaf carbon isotope discrimination tested as a proxy of WUE). In both species, biomass production, WUE(i) and WUE(T) increased with increasing N supply, but there was no effect of N supply on either transpiration or stomatal conductance and Delta was negatively related to leaf N concentration. Plots of Delta versus both WUE(i) and WUE(T) revealed negative trends, but the regression between WUE(i) and Delta was significant only for Douglas-fir, and the regression between WUE(T) and Delta was significant only for poplar. Thus, the mechanisms underlying the response of WUE to N supply were mainly related to a positive effect of N supply on photosynthetic rates. The data confirm that carbon isotope discrimination may be a useful proxy of WUE. The finding that N availability enhances both biomass production and WUE may have practical implications in regions where these factors impose constraints on forest productivity.


Assuntos
Populus/fisiologia , Pseudotsuga/fisiologia , Árvores/fisiologia , Biomassa , Nitrogênio/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia
15.
Tree Physiol ; 23(2): 137-44, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12533308

RESUMO

We compared photosynthesis-nitrogen relationships of one broad-leaved (poplar; Populus x euroamericana (Dole) Guinier) and one conifer (Douglas-fir; Pseudotsuga menziesii (Mirb.) Franco) species. Plants were grown in large pots to allow free root development and were kept well watered. We determined effects of low, intermediate and high nitrogen supply rates on area-based leaf nitrogen (Na) and chlorophyll concentrations, leaf mass per area (LMA), light-saturated photosynthesis (Amax), maximum carboxylation (Vcmax) and electron transport rate (Jmax), photosynthetic nitrogen-use efficiency (PNUE), and proportions of leaf N in active Rubisco (PR), bioenergetic pools (PB) and the light-harvesting complex (PLH). Nitrogen supply significantly affected leaf Na. Leaf mass per area did not differ between species and was unaffected by the N treatments. In both species, there was a positive correlation between leaf Na and chlorophyll concentration, and between leaf Na and the photosynthetic parameters Amax, Jmax and Vcmax. At comparable leaf Na, however, poplar showed twofold higher PNUE and a threefold steeper slope of the Amax- nitrogen relationship than Douglas-fir. Leaf Na was negatively correlated with PNUE in Douglas-fir but not in poplar. Leaf Na was also negatively correlated with PR, PB and PLH in Douglas-fir, whereas in poplar, a negative correlation was found only for PLH. Parameter PR was significantly higher in poplar than in Douglas-fir. The ratio of CO2 concentration in the intercellular space to that in ambient air was higher in poplar than in Douglas-fir. Overall, our data suggest that differences in the photosynthesis-nitrogen relationship and PNUE between Douglas-fir and poplar primarily reflect a different investment of N to active Rubisco, and possibly a different constraint to CO2 diffusion.


Assuntos
Nitrogênio/fisiologia , Fotossíntese/fisiologia , Populus/fisiologia , Pseudotsuga/fisiologia , Árvores/fisiologia , Dióxido de Carbono/fisiologia , Clorofila/fisiologia , Folhas de Planta/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA