Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896086

RESUMO

This study aims to evaluate the impacts of the lighting photosynthetic photon flux density (PPFD) on the growth, photosynthesis, and antioxidant response of common purslane (Portulaca oleracea) cultivars to determine energy-efficient lighting strategies for CEA. Green and golden purslane cultivars were cultivated in CEA chambers and four experimental treatments consisting of PPFDs of 150, 200, 250, and 300 ± 10 µmol m-2s-1 were performed, representing daily light integrals (DLIs) of 8.64-17.28 mol m-2d-1 throughout a 16 h photoperiod. The results show that photoresponses to light PPFDs are cultivar-specific. The green cultivar accumulates 174% more dry weight at 300 PPFD compared to the golden cultivar, and also has a higher LUE, but a lower ETR. Dry weight accumulation, plant height, and leaf area dependence on light intensity do not highlight the economic significance of light PPFD/DLI. The derivative parameter (Δ fresh weight (%)/ΔDLI %) more efficiently explains how the percentage increase in DLI due to an increased PPFD affects the percentage of biomass gain between these PPFD treatments. For both cultivars, the relative fresh weight gain is maximal when the lighting PPFD increases from 200 to 250 µmol m-2s-1 and declines with PPFD increases from 250 to 300.

2.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432868

RESUMO

Medicinal and agricultural plants contain numerous phytochemical compounds with pronounced biological effects on human health. They are known to encapsulate most of their characteristic bioactive compounds within membranous elements of intercellular communication known as exosomes. These nanovesicles serve as capsules protecting their biological activity and improving their penetration into the tissue. Therefore, the application of plant exosome preparations holds considerable potential for cosmetics and pharmacy, but the quality and consistency of plant material for exosome isolation is of critical importance. Therefore, in this study, we aimed to evaluate yield, size distribution patterns, and antioxidant properties between nanovesicle preparations of the following portfolio of medicinal plants: Kalanchoe daigremontiana, Artemisia absinthium, Hypericum perforatum, Silybum marianum, Chelidonium majus, and Scutellaria baicalensis. Results showed that nanoparticle yield, size distribution, and antioxidant activities were specific to plant species. Compared to other plants, nanoparticle preparations from Artemisia absinthium were distinguished by remarkably higher yield and concentration, while the highest antioxidant activity of plant-derived nanoparticle preparations per weight and per particle was determined to occur in Chelidonium majus and Hypericum perforatum samples. Results showed no significant correlation in DPPH (2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and FRAP (ferric reducing antioxidant power) between plant material and nanoparticle preparations. More detailed biochemical analysis of exosome preparations is necessary to validate their biological activity and its relation to source plant cells.

3.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297824

RESUMO

This study evaluates the effect of end-of-day blue (EOD B) light on the physiological response of lettuce (Lactuca sativa, Lobjoits Green Cos) at different phenological development stages. Plants were grown in a controlled environment growth chamber (day/night temperature 21 ± 2 °C; relative air humidity 60 ± 5%) under the light of light-emitting diodes (LEDs) consisting of 5% blue (B; 450 nm), 85% red (R; 660 nm), and 10% green (G; 530 nm) photosynthetic photon flux density (PPFD) at 200 µmol m-2 s-1 for 16 h d-1 (BRG, control) for 8, 15, and 25 days (BBCH 12, BBCH 14, and BBCH 18, respectively). For the EOD B treatments, lettuce plants were additionally illuminated with 100% of B light at 30 and 60 µmol m-2 s-1 PPFD for 4 h d-1 (B30 and B60, respectively). The results show that EOD B light caused the elevated shoot elongation of lettuce plants regardless of their growth stages. However, leaf width increased only in more developed lettuce plants (BBCH 18). EOD B light negatively affected the development of new leaves and fresh weight, except for seedlings (BBCH 12). Most photosynthetic and spectral leaf indices also decreased when lettuce was treated with EOD B light, especially under the PPFD level of 60 µmol m-2 s-1. Moreover, the changes in metabolic parameters such as DPPH free radical activity, free proline content, and H+-ATPase activity in lettuce showed a plant response to unfavorable conditions to EOD B light.

4.
Antioxidants (Basel) ; 11(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009278

RESUMO

In order to ensure sufficient food resources for a constantly growing human population, new technologies (e.g., cold plasma technologies) are being developed for increasing the germination and seedling growth without negative effects on the environment. Pinaceae species are considered a natural source of antioxidant compounds and are valued for their pharmaceutical and nutraceutical properties. In this study, the seeds of seven different Norway spruce half-sib families were processed for one or two minutes with cold plasma (CP) using dielectric barrier discharge (DBD) plasma equipment. At the end of the second vegetation season, the total flavonoid content (TFC), DPPH (2,2- diphenyl-1-picryl-hydrazyl-hydrate), and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) antioxidant activity, and the amounts of six organic acids (folic, malic, citric, oxalic, succinic, and ascorbic) were determined in the needles of different half-sib families of Norway spruce seedlings. The results show that the TFC, antioxidant activity, and amounts of organic acids in the seedling needles depended on both the treatment duration and the genetic family. The strongest positive effect on the TFC was determined in the seedlings of the 477, 599, and 541 half-sib families after seed treatment with CP for 1 min (CP1). The TFC in these families increased from 118.06 mg g-1 to 312.6 mg g-1 compared to the control. Moreover, seed treatment with CP1 resulted in the strongest increase in the antioxidant activity of the needles of the 541 half-sib family seedlings; the antioxidant activity, determined by DPPH and ABTS tests, increased by 30 and 23%, respectively, compared to the control. The obtained results indicate that the CP effect on the amount of organic acids in the needles was dependent on the half-sib family. It was determined that treatment with CP1 increased the amount of five organic acids in the needles of the 541 half-sib family seedlings. The presented results show future possibilities for using cold plasma seed treatment in the food and pharmacy industries.

5.
Plants (Basel) ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807661

RESUMO

Light and nutrients are among the most important factors for sustained plant production in agriculture. As one of the goals of the European Green Deal strategy is to reduce energy consumption, greenhouse growers focus on high-value crop cultivation with less-energy-demanding growing systems. This study aimed to evaluate the effect of fertilization at different light intensities on the growth of lettuce and basil and the activity of the antioxidant system. Sweet basil (Ocimum basilicum, 'Opal') and lettuce (Lactuca sativa, 'Nikolaj') were grown in a greenhouse supplementing natural light (~80 µmol m-2 s-1) with lighting at two photon flux densities (150 and 250 µmol m-2 s-1), 16 h photoperiod, and 20/16 °C day/night temperature in May (Lithuania, 55°60' N, 23°48' E). In each light regime treatment, half of the plants were grown without additional fertilization; the other half were fertilized twice a week with a complex fertilizer (NPK 3-1-3). The results showed that the antioxidant activity of basil was most affected by 150 µmol m-2 s-1 PPFD lighting and the absence of fertilization. Altered antioxidant activity in lettuce in the presence of 250 µmol m-2 s-1 PPFD additional light intensity and fertilization resulted in higher morphological parameters.

6.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567124

RESUMO

The study aimed to determine the changes in phenolic compounds content in lettuce (Lactuca sativa L. cv. Little Gem) depending on the preharvest short-term daytime or nighttime supplemental light-emitting diodes (LEDs) to high-pressure sodium lamps (HPS) lighting in a greenhouse during autumn and spring cultivation. Plants were grown in a greenhouse under HPS supplemented with 400 nm, 455 nm, 530 nm, 455 + 530 nm or 660 nm LEDs light for 4 h five days before harvest. Two experiments (EXP) were performed: EXP1-HPS, and LEDs treatment during daytime 6 PM-10 PM, and EXP2-LEDs treatment at nighttime during 10 AM-2 PM. LEDs' photosynthetic photon flux density (PPFD) was 50 and HPS-90 ± 10 µmol m-2 s-1. The most pronounced positive effect on total phenolic compounds revealed supplemental 400 and 455 + 530 nm LEDs lighting, except its application during the daytime at spring cultivation, when all supplemental LEDs light had no impact on phenolics content variation. Supplemental 400 nm LEDs applied in the daytime increased chlorogenic acid during spring and chicoric acid during autumn cultivation. 400 nm LEDs used in nighttime enhanced chlorogenic acid accumulation and rutin during autumn. Chicoric and chlorogenic acid significantly increased under supplemental 455 + 530 nm LEDs applied at daytime in autumn and used at nighttime-in spring. Supplemental LEDs application in the nighttime resulted in higher phenolic compounds content during spring cultivation and the daytime during autumn cultivation.

7.
Plants (Basel) ; 11(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35050084

RESUMO

Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. The aim of the study was to evaluate the canopy position's effect on fruit internal and external quality parameters. This is the first study where all the main fruit quality and maturation parameters were evaluated on the same trees and were related to the light conditions and photosynthetic parameters. Four fruit positions were tested: top of the apple tree, lower inside part of the canopy, and east and west sides of the apple tree. Fruit quality variability was significant for fruit size, blush, colour indices, total sugar content, dry matter concentration, accumulation of secondary metabolites and radical scavenging activity. Fruit position in the canopy did not affect flesh firmness and fruit maturity parameters such as the starch index, Streif index and respiration rate. At the Lithuanian geographical location (55°60' N), significantly, the highest fruit quality was achieved at the top of the apple tree. The tendency was established that apple fruits from the west side of the canopy have better fruit quality than from the east side and it could be related to better light conditions at the west side of the tree. Inside the canopy, fruits were distinguished only by the higher accumulation of triterpenic compounds and higher content of malic acid. Light is a main factor of fruit quality variation, thus all orchard management practices, including narrow two-dimensional tree canopies and reflecting ground covers which improve light penetration through the tree canopy, should be applied.

8.
Front Plant Sci ; 13: 1098048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684802

RESUMO

Essential oils and extracts are investigated in sustainable plant protection area lately. Alternative antifungal substances are especially relevant for major economic-relevance pathogens, like Botrytis cinerea (causal agent of strawberry grey mold), control. However, the reaction of plants to alternative protection with plant-origin products is currently unknown. Induced stress in plants causes changes in antioxidant and photosynthetic systems. The aim of the research was to determine the defense response of strawberry plants under application of coriander seed products. In the first step of the research, we determined coriander seed (Coriandrum sativum), black seed (Nigella sativa) and peppermint leaf (Menta × piperita) products' antifungal activity against B. cinerea in vitro. Secondly, we continued evaluation of antifungal activity under controlled environment on strawberry plants of the most effective coriander seed products. Additionally, we evaluated the antioxidant and photosynthetic parameters in strawberries, to examine the response of plants. Antifungal activity on strawberries was determined based on grey mold incidence and severity after application of coriander products. Impact on photosynthetic system was examined measuring photosynthetic rate, transpiration rate, stomatal conductance, and intercellular to ambient CO2 concentration. Strawberry leaves were collected at the end of the experiment to analyze the antioxidant response. The highest antifungal activity both in vitro and on strawberries had coriander seed essential oil, which decreased grey mold severity. Coriander extract increased the photosynthetic capacity and antioxidant response of strawberry plants, however had negative effect on suppression of grey mold. In most cases, the essential oil activated antioxidant response of strawberry plants lower than extract. Our study results provide no direct impact of increased photosynthetic capacity values and antifungal effect after treatment with natural oils. The highest concentrations of coriander essential oil and extract potentially demonstrated a phytotoxic effect.

9.
Plants (Basel) ; 10(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203040

RESUMO

Global demand for food is increasing each year, but the area of land suitable for farming is limited. Thus, there is a need to grow not only larger quantities of food but also higher quality food products in the same area. This study aimed to evaluate the influence of rootstock and high-density orchards on cv. Auksis fruit quality. Two rootstocks were selected for this experiment, P 22 super dwarfing and P 60 dwarfing. Apple trees cv. Auksis were planted in the year 2001 in single rows spaced 1.00 m, 0.75 m, and 0.50 m, apart with 3 m between rows. High-density planting and rootstock combination was found to have no significant effect on sugar accumulation and most of the elements in apple fruits. However, super dwarfing P 22 rootstock accumulated significantly higher (up to 45%) content of organic acids and up to 33%-44% lower DPPH free radical scavering activity compared to P 60 dwarfing rootstock. After summarizing the obtained results, apples which accumulated the most antioxidants (according to the activity of phenolic compounds, DPPH• and ABTS•), magnesium, and potassium were collected from cv. Auksis apple trees which was grafted on super dwarfing P 22 rootstock and planted at 3 × 0.75 m distances.

10.
Plants (Basel) ; 10(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921895

RESUMO

The consumption of microgreens has increased due to their having higher levels of bioactive compounds and mineral nutrients than mature plants. The lighting conditions during the cultivation of microgreens, if optimally selected, can have a positive effect by further increasing their nutritional value. Thus, our study aimed to determine the changes in mineral nutrients contents of Brassicaceae microgreens depending on different blue-red (B:R) light ratios in light-emitting diode (LED) lighting and to evaluate their growth and nutritional value according to different indexes. Experiments were performed in controlled environment growth chambers at IH LRCAF, 2020. Microgreens of mustard (Brassica juncea 'Red Lace') and kale (Brassica napus 'Red Russian') were grown hydroponically under different B:R light ratios: 0%B:100%R, 10%B:90%R, 25%B:75%R, 50%B:50%R, 75%B:25%R, and 100%B:0%R. A 220 µmol m-2 s-1 total photon flux density (TPFD), 18 h photoperiod, 21/17 ± 2 °C temperature and 60% ± 5% relative humidity in the growth chamber were maintained during cultivation. We observed that an increasing percentage of blue light in the LED illumination spectrum during growth was associated with reduced elongation in the microgreens of both species and had a positive effect on the accumulation of mostly macro- and micronutrients. However, different B:R light ratios indicate a species-dependent response to changes in growth parameters such as leaf area, fresh and dry mass, and optical leaf indexes such as for chlorophyll, flavonol, anthocyanin, and carotenoid reflectance.

11.
Sci Rep ; 10(1): 9177, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514086

RESUMO

The aim was to find out the impact of stress, caused by agrotechnological tools on photosynthetic behaviour of apple trees. The apple tree (Malus domestica Borkh.) cultivar Rubin was grafted on dwarfing rootstocks P60, planted in single rows spaced 1.25 m apart with 3.5 m between rows. In contrast to plant senescing reflectance index and nitrogen balance index, the photochemical reflectance index was significantly higher in 2018 compared with 2017. Such differences might be caused by drought stress on the summer and fast recovery before harvest time when measurements were made. The movement of nutrients and water disrupted by trunk incision had significantly negative effect on reflectance indices regardless on the year. Mechanical pruning with trunk incision and calcium-prohexadione lead to decreased dry to fresh weight ratio by 10-12% in first year of treatment. Mechanical pruning had significantly negative impact on photosynthetic rate, compared to pruning by super spindle it decreased 47%. Strong positive correlation between PRI and NBI 0,89-0,94, and strong negative correlations between PRI, NBI and PSRI -0.88 - (-0.91) were determined.


Assuntos
Malus/fisiologia , Fotossíntese/fisiologia , Estresse Fisiológico/fisiologia , Árvores/fisiologia , Secas , Luz , Malus/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Estações do Ano , Árvores/metabolismo , Água/metabolismo
12.
Front Plant Sci ; 11: 610174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643330

RESUMO

This study aimed to evaluate the effect of dynamic red and blue light parameters on the physiological responses and key metabolites in lettuce and also the subsequent impact of varying light spectra on nutritive value. We explored the metabolic changes in carotenes, xanthophylls, soluble sugars, organic acids, and antioxidants; the response of photosynthetic indices [photosynthetic (Pr) and transpiration (Tr) rates]; and the intracellular to ambient CO2 concentration ratios (C i /C a ) in lettuce (Lactuca sativa L. "Lobjoits Green Cos"). They were cultivated under constant (con) or parabolic (dyn) blue (B, 452 nm) and/or red (R, 662 nm) light-emitting diode (LED) photosynthetic photon flux densities (PPFDs) at 12, 16, and 20 h photoperiods, maintaining consistent daily light integrals (DLIs) for each light component in all treatments, at 2.3 and 9.2 mol m-2 per day for blue and red light, respectively. The obtained results and principal component analysis (PCA) confirmed a significant impact of the light spectrum, photoperiod, and parabolic profiles of PPFD on the physiological response of lettuce. The 16 h photoperiod resulted in significantly higher content of xanthophylls (neoxanthin, violaxanthin, lutein, and zeaxanthin) in lettuce leaves under both constant and parabolic blue light treatments (BconRdyn 16 h and BdynRdyn 16 h, respectively). Lower PPFD levels under a 20 h photoperiod (BdynRdyn 20 h) as well as higher PPFD levels under a 12 h photoperiod (BdynRdyn 12 h) had a pronounced impact on leaf gas exchange indices (Pr, Tr, C i /C a ), xanthophylls, soluble sugar contents, and antioxidant properties of lettuce leaves. The parabolic PPFD lighting profile over a 16 h photoperiod (BdynRdyn 16 h) led to a significant decrease in C i /C a , which resulted in decreased Pr and Tr, compared with constant blue or red light treatments with the same photoperiod (BconRdyn and BdynRcon 16 h). Additionally, constant blue lighting produced higher α + ß-carotene and anthocyanin (ARI) content and increased carotenoid to chlorophyll ratio (CRI) but decreased biomass accumulation and antioxidant activity.

13.
Food Chem ; 310: 125799, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31711809

RESUMO

In this study we explore the effects of multi-colour LED lighting spectrum on nutritive primary metabolites in green ('Lobjoits green cos') and red ('Red cos') leaf lettuce (Lactuca sativa L.), cultivated in controlled environment. The basal lighting, consisting of blue 455 nm, red 627 and 660 nm and far red 735 nm LEDs, was supplemented with UV-A 380 nm, green 510 nm, yellow 595 nm or orange 622 nm LED wavelengths at total photosynthetic photon flux density of 300 µmol m-2 s-1. Supplemental lighting colours did not affect lettuce growth; however had distinct impact on nitrite, amino acid, organic acid, and soluble sugar contents. Orange, green and UV-A light had differential effects on red and green leaf lettuce metabolism and interplay with nutritional value and safety of lettuce production. The metabolic response was cultivar specific; however green light had reasonable impact on the contents of nutritive primary metabolites in red and green leaf lettuce.


Assuntos
Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Lactuca/química , Lactuca/fisiologia , Nitratos/metabolismo , Aminoácidos/análise , Ácidos Carboxílicos/análise , Ambiente Controlado , Iluminação , Nitratos/análise , Nitritos/metabolismo , Fotossíntese , Pigmentação , Açúcares/análise , Açúcares/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA