Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778283

RESUMO

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum , Raízes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Transcriptoma , Perfilação da Expressão Gênica , Genes de Plantas
2.
Plant J ; 111(2): 546-566, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35596715

RESUMO

In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.


Assuntos
Oryza , DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
PLoS One ; 15(11): e0238736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211715

RESUMO

Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.


Assuntos
Oryza/genética , Raízes de Plantas/genética , Transcriptoma/genética , Parede Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Lasers , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcrição Gênica/genética
4.
Rice (N Y) ; 12(1): 69, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31485824

RESUMO

BACKGROUND: Due to their sessile life style, plant survival is dependent on the ability to build up fast and highly adapted responses to environmental stresses by modulating defense response and organ growth. The phytohormone jasmonate plays an essential role in regulating these plant responses to stress. RESULTS: To assess variation of plant growth responses and identify genetic determinants associated to JA treatment, we conducted a genome-wide association study (GWAS) using an original panel of Vietnamese rice accessions. The phenotyping results showed a high natural genetic variability of the 155 tested rice accessions in response to JA for shoot and root growth. The level of growth inhibition by JA is different according to the rice varieties tested. We conducted genome-wide association study and identified 28 significant associations for root length (RTL), shoot length (SHL), root weight (RTW), shoot weight (SHW) and total weight (TTW) in response to JA treatment. Three common QTLs were found for RTL, RTW and SHL. Among a list of 560 candidate genes found to co-locate with the QTLs, a transcriptome analysis from public database for the JA response allows us to identify 232 regulated genes including several JA-responsive transcription factors known to play a role in stress response. CONCLUSION: Our genome-wide association study shows that common and specific genetic elements are associated with inhibition of shoot and root growth under JA treatment suggesting the involvement of a complex JA-dependent genetic control of rice growth inhibition at the whole plant level. Besides, numerous candidate genes associated to stress and JA response are co-located with the association loci, providing useful information for future studies on genetics and breeding to optimize the growth-defense trade-off in rice.

5.
Plant J ; 100(5): 954-968, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31369175

RESUMO

Crown roots (CRs) are essential components of the rice root system. Several genes involved in CR initiation or development have been identified but our knowledge about how they organize to form a gene regulatory network (GRN) is still limited. To characterize the regulatory cascades acting during CR formation, we used a systems biology approach to infer the GRN controlling CR formation downstream of CROWN ROOTLESS 1 (CRL1), coding for an ASL (asymmetric leaves-2-like)/LBD (LOB domain) transcription factor necessary for CR initiation. A time-series transcriptomic dataset was generated after synchronized induction of CR formation by dexamethasone-mediated expression of CRL1 expression in a crl1 mutant background. This time series revealed three different genome expression phases during the early steps of CR formation and was further exploited to infer a GRN using a dedicated algorithm. The predicted GRN was confronted with experimental data and 72% of the inferred links were validated. Interestingly, this network revealed a regulatory cascade linking CRL1 to other genes involved in CR initiation, root meristem specification and maintenance, such as QUIESCENT-CENTER-SPECIFIC HOMEOBOX, and in auxin signalling. This predicted regulatory cascade was validated in vivo using transient activation assays. Thus, the CRL1-dependant GRN reflects major gene regulation events at play during CR formation and constitutes a valuable source of discovery to better understand this developmental process.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Homeobox , Meristema/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcriptoma
6.
Trends Plant Sci ; 23(8): 706-720, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29764727

RESUMO

Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies.


Assuntos
Redes Reguladoras de Genes , Plantas/genética , Biologia de Sistemas , Domesticação , Mutação , Fenótipo , Melhoramento Vegetal
7.
BMC Plant Biol ; 16: 64, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964867

RESUMO

BACKGROUND: Despite recent sequencing efforts, local genetic resources remain underexploited, even though they carry alleles that can bring agronomic benefits. Taking advantage of the recent genotyping with 22,000 single-nucleotide polymorphism markers of a core collection of 180 Vietnamese rice varieties originating from provinces from North to South Vietnam and from different agrosystems characterized by contrasted water regimes, we have performed a genome-wide association study for different root parameters. Roots contribute to water stress avoidance and are a still underexploited target for breeding purpose due to the difficulty to observe them. RESULTS: The panel of 180 rice varieties was phenotyped under greenhouse conditions for several root traits in an experimental design with 3 replicates. The phenotyping system consisted of long plastic bags that were filled with sand and supplemented with fertilizer. Root length, root mass in different layers, root thickness, and the number of crown roots, as well as several derived root parameters and shoot traits, were recorded. The results were submitted to association mapping using a mixed model involving structure and kinship to enable the identification of significant associations. The analyses were conducted successively on the whole panel and on its indica (115 accessions) and japonica (64 accessions) subcomponents. The two associations with the highest significance were for root thickness on chromosome 2 and for crown root number on chromosome 11. No common associations were detected between the indica and japonica subpanels, probably because of the polymorphism repartition between the subspecies. Based on orthology with Arabidopsis, the possible candidate genes underlying the quantitative trait loci are reviewed. CONCLUSIONS: Some of the major quantitative trait loci we detected through this genome-wide association study contain promising candidate genes encoding regulatory elements of known key regulators of root formation and development.


Assuntos
Genoma de Planta , Oryza/genética , Raízes de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Oryza/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Locos de Características Quantitativas , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA