Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
iScience ; 26(10): 107826, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37752946

RESUMO

Diabetes mellitus and alterations in thyroid hormone (TH) signaling are closely linked. Though the role of TH signaling in cell differentiation and growth is well known, it remains unclear whether its alterations contribute to the pathobiology of diabetic cells. Here, we aim to investigate whether the administration of exogenous T3 can counteract the cellular remodeling that occurs in diabetic cardiomyocytes, podocytes, and pancreatic beta cells. Treating diabetic rats with T3 prevents dedifferentiation, pathological growth, and ultrastructural alterations in podocytes and cardiomyocytes. In vitro, T3 reverses glucose-induced growth in human podocytes and cardiomyocytes, restores cardiomyocyte cytoarchitecture, and reverses pathological alterations in kidney and cardiac organoids. Finally, T3 treatment counteracts glucose-induced transdifferentiation, cell growth, and loss in pancreatic beta cells through TH receptor alpha1 activation. Our studies indicate that TH signaling activation substantially counteracts diabetes-induced pathological remodeling, and provide a potential therapeutic approach for the treatment of diabetes and its complications.

2.
J Alzheimers Dis ; 43(4): 1115-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25147120

RESUMO

Alzheimer's disease (AD) is the most common form of progressive neurodegenerative disease characterized by cognitive impairment and mental disorders. The actual cause and cascade of events in the progression of this pathology is not fully determined. AD is multifaceted in nature and is linked to different multiple mechanisms in the brain. This aspect is related to the lack of efficacious therapies that could slow down or hinder the disease onset/progression. The ideal treatment for AD should be able to modulate the disease through multiple mechanisms rather than targeting a single dysregulated pathway. Recently, the endocannabinoid system emerged as a novel potential therapeutic target to treat AD. In fact, exogenous and endogenous cannabinoids seem to be able to modulate multiple processes in AD, although the mechanisms that are involved are not fully elucidated. This review provides an update of this area. In this review, we recapitulate the role of endocannabinoid signaling in AD and the probable mechanisms through which modulators of the endocannabinoid system provide their effects, thus highlighting how this target might provide more advantages over other therapeutic targets.


Assuntos
Doença de Alzheimer/fisiopatologia , Endocanabinoides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Humanos
3.
Eur Neuropsychopharmacol ; 24(9): 1511-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25106694

RESUMO

The endocannabinoid system is an important regulator of neuroendocrine and behavioral adaptation in stress related disorders thus representing a novel potential therapeutic target. The aim of this study was to determine the effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on stress mediators of HPA axis and to study the role of the basolateral amygdala (BLA) in responses to forced swim stress. Systemic administration of URB597 (0.1 and 0.3mg/kg) reduced the forced swim stress-induced activation of HPA axis. More specifically, URB597 decreased stress-induced corticotropin-releasing hormone (CRH) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus, and pro-opiomelanocortin (POMC) mRNA expression dose-dependently in pituitary gland without affecting plasma corticosterone levels. URB597 treatment also attenuated stress-induced neuronal activation of the amygdala and PVN, and increased neuronal activation in the locus coeruleus (LC) and nucleus of solitary tract (NTS). Injection of the CB1 receptor antagonist AM251 (1ng/side) in the BLA significantly attenuated URB597-mediated effects in the PVN and completely blocked those induced in the BLA. These results suggest that the BLA is a key structure involved in the anti-stress effects of URB597, and support the evidence that enhancement of endogenous cannabinoid signaling by inhibiting FAAH represents a potential therapeutic strategy for the management of stress-related disorders.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Benzamidas/farmacologia , Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Análise de Variância , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Piperidinas/farmacologia , Sistema Hipófise-Suprarrenal , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pirazóis/farmacologia , RNA Mensageiro/metabolismo , Ratos , Natação/psicologia , Fatores de Tempo
4.
J Alzheimers Dis ; 40(3): 701-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24496074

RESUMO

The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/genética , Receptor CB1 de Canabinoide/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA