Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Neuron ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955183

RESUMO

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.

2.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766036

RESUMO

Single-molecule localization microscopy (SMLM) uses activatable or switchable fluorophores to create non-diffraction limited maps of molecular location in biological samples. Despite the utility of this imaging technique, the portfolio of appropriate labels for SMLM remains limited. Here, we describe a general strategy for the construction of "glitter bomb" labels by simply combining rhodamine and coumarin dyes though an amide bond. Condensation of the ortho-carboxyl group on the pendant phenyl ring of rhodamine dyes with a 7-aminocoumarin yields photochromic or spontaneously blinking fluorophores depending on the parent rhodamine structure. We apply this strategy to prepare labels useful super-resolution experiments in fixed cells using different attachment techniques. This general glitter bomb strategy should lead to improved labels for SMLM, ultimately enabling the creation of detailed molecular maps in biological samples.

3.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766047

RESUMO

All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

4.
Nat Commun ; 15(1): 4178, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755200

RESUMO

In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we present an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrate that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacts nucleosome diffusive properties in a manner that is dependent both on local chromatin density and on relative location within the nucleus. Our results support a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Additionally, they reveal that nuclear heterogeneity arises from both active and passive processes and highlight the need to account for different organizational principles when modeling different chromatin environments.


Assuntos
Cromatina , Nucleossomos , Imagem Individual de Molécula , Nucleossomos/metabolismo , Cromatina/metabolismo , Cromatina/química , Humanos , Imagem Individual de Molécula/métodos , Núcleo Celular/metabolismo , Histonas/metabolismo , Células HeLa , Difusão
5.
bioRxiv ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38766149

RESUMO

Spontaneously blinking fluorophores permit the detection and localization of individual molecules without reducing buffers or caging groups, thus simplifying single-molecule localization microscopy (SMLM). The intrinsic blinking properties of such dyes are dictated by molecular structure and modulated by environment, which can limit utility. We report a series of tuned spontaneously blinking dyes with duty cycles that span two orders of magnitude, allowing facile SMLM in cells and dense biomolecular structures.

6.
ACS Chem Biol ; 19(4): 908-915, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38525961

RESUMO

The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.


Assuntos
Peptídeos Penetradores de Células , Corantes Fluorescentes , Hidrolases , Humanos , Transporte Biológico , Peptídeos Penetradores de Células/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Concentração de Íons de Hidrogênio , Corantes Fluorescentes/química
7.
Elife ; 122024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497611

RESUMO

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.


Assuntos
Cromatina , Nucleossomos , Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Translocação Genética
8.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293098

RESUMO

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start-sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and 2-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/sec on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.

9.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398232

RESUMO

Dendrites on neurons integrate synaptic inputs to determine spike timing. Dendrites also convey back-propagating action potentials (bAPs) which interact with synaptic inputs to produce plateau potentials and to mediate synaptic plasticity. The biophysical rules which govern the timing, spatial structures, and ionic character of dendritic excitations are not well understood. We developed molecular, optical, and computational tools to map sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. We observed history-dependent bAP propagation in distal dendrites, driven by locally generated Na + spikes (dSpikes). Dendritic depolarization creates a transient window for dSpike propagation, opened by A-type K V channel inactivation, and closed by slow Na V inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials, with accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture of how dendritic excitations shape associative plasticity rules.

10.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014222

RESUMO

In the nucleus, biological processes are driven by proteins that diffuse through and bind to a meshwork of nucleic acid polymers. To better understand this interplay, we developed an imaging platform to simultaneously visualize single protein dynamics together with the local chromatin environment in live cells. Together with super-resolution imaging, new fluorescent probes, and biophysical modeling, we demonstrated that nucleosomes display differential diffusion and packing arrangements as chromatin density increases whereas the viscoelastic properties and accessibility of the interchromatin space remain constant. Perturbing nuclear functions impacted nucleosome diffusive properties in a manner that was dependent on local chromatin density and supportive of a model wherein transcription locally stabilizes nucleosomes while simultaneously allowing for the free exchange of nuclear proteins. Our results reveal that nuclear heterogeneity arises from both active and passive process and highlights the need to account for different organizational principals when modeling different chromatin environments.

11.
J Am Chem Soc ; 145(42): 23000-23013, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37842926

RESUMO

Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone-zwitterion equilibrium constant (KL-Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure-activity relationships that govern KL-Z. We discovered that the auxochrome substituent strongly affects the lactone-zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure-activity relationships that will guide the design of future probes.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Rodaminas/química , Microscopia de Fluorescência/métodos , Lactonas
13.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577585

RESUMO

One-third of the mammalian proteome is comprised of transmembrane and secretory proteins that are synthesized on endoplasmic reticulum (ER). Here, we investigate the spatial distribution and regulation of mRNAs encoding these membrane and secretory proteins (termed "secretome" mRNAs) through live cell, single molecule tracking to directly monitor the position and translation states of secretome mRNAs on ER and their relationship to other organelles. Notably, translation of secretome mRNAs occurred preferentially near lysosomes on ER marked by the ER junction-associated protein, Lunapark. Knockdown of Lunapark reduced the extent of secretome mRNA translation without affecting translation of other mRNAs. Less secretome mRNA translation also occurred when lysosome function was perturbed by raising lysosomal pH or inhibiting lysosomal proteases. Secretome mRNA translation near lysosomes was enhanced during amino acid deprivation. Addition of the integrated stress response inhibitor, ISRIB, reversed the translation inhibition seen in Lunapark knockdown cells, implying an eIF2 dependency. Altogether, these findings uncover a novel coordination between ER and lysosomes, in which local release of amino acids and other factors from ER-associated lysosomes patterns and regulates translation of mRNAs encoding secretory and membrane proteins.

14.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503182

RESUMO

Genetically encoded fluorescent calcium indicators have revolutionized neuroscience and other biological fields by allowing cellular-resolution recording of physiology during behavior. However, we currently lack bright, genetically targetable indicators in the near infrared that can be used in animals. Here, we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains that can be genetically targeted to specific cell populations. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several dye-ligands that efficiently label the central nervous system in animals. When bound to a near-infrared dye-ligand, WHaloCaMP1a is more than twice as bright as jGCaMP8s, and shows a 7× increase in fluorescence intensity and a 2.1 ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a with near-infrared fluorescence emission to image Ca2+ responses in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae, and to quantitate calcium concentration using fluorescence lifetime imaging microscopy (FLIM).

15.
Curr Opin Chem Biol ; 75: 102335, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269674

RESUMO

The field of organic chemistry began with 19th century scientists identifying and then expanding upon synthetic dye molecules for textiles. In the 20th century, dye chemistry continued with the aim of developing photographic sensitizers and laser dyes. Now, in the 21st century, the rapid evolution of biological imaging techniques provides a new driving force for dye chemistry. Of the extant collection of synthetic fluorescent dyes for biological imaging, two classes reign supreme: rhodamines and cyanines. Here, we provide an overview of recent examples where modern chemistry is used to build these old-but-venerable classes of optically responsive molecules. These new synthetic methods access new fluorophores, which then enable sophisticated imaging experiments leading to new biological insights.


Assuntos
Corantes Fluorescentes , Luz , Corantes Fluorescentes/química , Rodaminas/química
16.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37292614

RESUMO

A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms governing learning and memory. We developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) insertion in vivo by pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach allows for single-synapse resolution maps of plasticity in genetically targeted neurons during memory formation. We investigated the relationship between synapse-level and cell-level memory encodings by mapping synaptic plasticity and cFos expression in hippocampal CA1 pyramidal cells upon contextual fear conditioning (CFC). We observed a strong correlation between synaptic plasticity and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.

17.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292691

RESUMO

Neurons integrate synaptic inputs within their dendrites and produce spiking outputs, which then propagate down the axon and back into the dendrites where they contribute to plasticity. Mapping the voltage dynamics in dendritic arbors of live animals is crucial for understanding neuronal computation and plasticity rules. Here we combine patterned channelrhodopsin activation with dual-plane structured illumination voltage imaging, for simultaneous perturbation and monitoring of dendritic and somatic voltage in Layer 2/3 pyramidal neurons in anesthetized and awake mice. We examined the integration of synaptic inputs and compared the dynamics of optogenetically evoked, spontaneous, and sensory-evoked back-propagating action potentials (bAPs). Our measurements revealed a broadly shared membrane voltage throughout the dendritic arbor, and few signatures of electrical compartmentalization among synaptic inputs. However, we observed spike rate acceleration-dependent propagation of bAPs into distal dendrites. We propose that this dendritic filtering of bAPs may play a critical role in activity-dependent plasticity.

18.
ACS Omega ; 8(14): 13252-13264, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065048

RESUMO

Mycobacterium tuberculosis has a complex life cycle transitioning between active and dormant growth states depending on environmental conditions. LipN (Rv2970c) is a conserved mycobacterial serine hydrolase with regulated catalytic activity at the interface between active and dormant growth conditions. LipN also catalyzes the xenobiotic degradation of a tertiary ester substrate and contains multiple conserved motifs connected with the ability to catalyze the hydrolysis of difficult tertiary ester substrates. Herein, we expanded a library of fluorogenic ester substrates to include more tertiary and constrained esters and screened 33 fluorogenic substrates for activation by LipN, identifying its unique substrate signature. LipN preferred short, unbranched ester substrates, but had its second highest activity against a heteroaromatic five-membered oxazole ester. Oxazole esters are present in multiple mycobacterial serine hydrolase inhibitors but have not been tested widely as ester substrates. Combined structural modeling, kinetic measurements, and substitutional analysis of LipN showcased a fairly rigid binding pocket preorganized for catalysis of short ester substrates. Substitution of diverse amino acids across the binding pocket significantly impacted the folded stability and catalytic activity of LipN with two conserved motifs (HGGGW and GDSAG) playing interconnected, multidimensional roles in regulating its substrate specificity. Together this detailed substrate specificity profile of LipN illustrates the complex interplay between structure and function in mycobacterial hormone-sensitive lipase homologues and indicates oxazole esters as promising inhibitor and substrate scaffolds for mycobacterial hydrolases.

19.
Neuron ; 111(10): 1547-1563.e9, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37015225

RESUMO

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


Assuntos
Enzima de Conversão de Angiotensina 2 , Rodopsina , Camundongos , Animais , Potenciais de Ação/fisiologia , Rodopsina/genética , Neurônios/fisiologia , Mutação/genética
20.
Nat Biotechnol ; 41(5): 631-639, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593408

RESUMO

Recording transcriptional histories of a cell would enable deeper understanding of cellular developmental trajectories and responses to external perturbations. Here we describe an engineered protein fiber that incorporates diverse fluorescent marks during its growth to store a ticker tape-like history. An embedded HaloTag reporter incorporates user-supplied dyes, leading to colored stripes that map the growth of each individual fiber to wall clock time. A co-expressed eGFP tag driven by a promoter of interest records a history of transcriptional activation. High-resolution multi-spectral imaging on fixed samples reads the cellular histories, and interpolation of eGFP marks relative to HaloTag timestamps provides accurate absolute timing. We demonstrate recordings of doxycycline-induced transcription in HEK cells and cFos promoter activation in cultured neurons, with a single-cell absolute accuracy of 30-40 minutes over a 12-hour recording. The protein-based ticker tape design we present here could be generalized to achieve massively parallel single-cell recordings of diverse physiological modalities.


Assuntos
Neurônios , Proteínas , Neurônios/fisiologia , Regiões Promotoras Genéticas , Proteínas de Fluorescência Verde/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA