RESUMO
Two series of macrocyclic inhibitors addressing the S1 pocket and the prime site of the fibrinolytic serine protease plasmin have been developed. In the first series, a P1 tranexamoyl residue was coupled to 4-aminophenylalanine in P1' position, which provided moderately potent inhibitors with inhibition constants around 1â µM. In the second series, a substituted biphenylalanine was incorporated as P1' residue leading to approximately 1000-fold stronger plasmin inhibitors, the best compounds possess subnanomolar inhibition constants. The most effective compounds already exhibit a certain selectivity as plasmin inhibitors compared to other trypsin-like serine proteases such as trypsin, plasma kallikrein, thrombin, activated protein Ca, as well as factors XIa and Xa. For inhibitor 28 of the second series, the co-crystal structure in complex with a Ser195Ala microplasmin mutant revealed that the P2' residue adopts multiple conformations. Most polar contacts to plasmin and surrounding water molecules are mediated through the P1 tranexamoyl residue, whereas the bound conformation of the macrocycle is mainly stabilized by two intramolecular hydrogen bonds.
RESUMO
ABSTRACT: Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.
Assuntos
Angioedemas Hereditários , Bradicinina , Humanos , Lisina , Angioedemas Hereditários/genética , Fibrinolisina , Metionina , Células HEK293 , Cininogênios , Calicreínas/genética , RacemetioninaRESUMO
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.
Assuntos
Fibrinolisina , Plasminogênio , Humanos , Ratos , Animais , Fosforilação , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Processamento de Proteína Pós-TraducionalRESUMO
Plasminogen (Plg) is the inactive form of plasmin (Plm) that exists in two major glycoforms, referred to as glycoforms I and II (GI and GII). In the circulation, Plg assumes an activation-resistant "closed" conformation via interdomain interactions and is mediated by the lysine binding site (LBS) on the kringle (KR) domains. These inter-domain interactions can be readily disrupted when Plg binds to lysine/arginine residues on protein targets or free L-lysine and analogues. This causes Plg to convert into an "open" form, which is crucial for activation by host activators. In this study, we investigated how various ligands affect the kinetics of Plg conformational change using small-angle X-ray scattering (SAXS). We began by examining the open and closed conformations of Plg using size-exclusion chromatography (SEC) coupled with SAXS. Next, we developed a high-throughput (HTP) 96-well SAXS assay to study the conformational change of Plg. This method enables us to determine the Kopen value, which is used to directly compare the effect of different ligands on Plg conformation. Based on our analysis using Plg GII, we have found that the Kopen of ε-aminocaproic acid (EACA) is approximately three times greater than that of tranexamic acid (TXA), which is widely recognized as a highly effective ligand. We demonstrated further that Plg undergoes a conformational change when it binds to the C-terminal peptides of the inhibitor α2-antiplasmin (α2AP) and receptor Plg-RKT. Our findings suggest that in addition to the C-terminal lysine, internal lysine(s) are also necessary for the formation of open Plg. Finally, we compared the conformational changes of Plg GI and GII directly and found that the closed form of GI, which has an N-linked glycosylation, is less stable. To summarize, we have successfully determined the response of Plg to various ligand/receptor peptides by directly measuring the kinetics of its conformational changes.
Assuntos
Lisina , Plasminogênio , Ligantes , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Serina Proteases , AnticorposRESUMO
Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.
Assuntos
Dapsona , Células Matadoras Naturais , Perforina/metabolismo , Ligantes , Células Matadoras Naturais/metabolismo , Morte Celular , Dapsona/metabolismoRESUMO
Two series of macrocyclic plasmin inhibitors with a C-terminal benzylamine group were synthesized. The substitution of the N-terminal phenylsulfonyl group of a previously described inhibitor provided two analogues with sub-nanomolar inhibition constants. Both compounds possess a high selectivity against all other tested trypsin-like serine proteases. Furthermore, a new approach was used to selectively introduce asymmetric linker segments. Two of these compounds inhibit plasmin with Ki values close to 2â nM. For the first time, four crystal structures of these macrocyclic inhibitors could be determined in complex with a Ser195Ala microplasmin mutant. The macrocyclic core segment of the inhibitors binds to the open active site of plasmin without any steric hindrance. This binding mode is incompatible with other trypsin-like serine proteases containing a sterically demanding 99-hairpin loop. The crystal structures obtained experimentally explain the excellent selectivity of this inhibitor type as previously hypothesized.
Assuntos
Antifibrinolíticos , Fibrinolisina , Fibrinolisina/química , Fibrinolisina/metabolismo , Antifibrinolíticos/química , Antifibrinolíticos/farmacologia , Tripsina/química , Ligação Proteica , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/químicaRESUMO
Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced swelling of skin and mucosal membranes. The most common cause is reduced plasma activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK, respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog ε-aminocaproic acid blocks Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain, perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE, therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311 cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human Plm when human kininogens are the substrates.
Assuntos
Angioedemas Hereditários , Angioedemas Hereditários/genética , Angioedemas Hereditários/patologia , Animais , Bradicinina/metabolismo , Fator XIIa/metabolismo , Fibrinolisina , Ácido Glutâmico , Humanos , Cininogênios/metabolismo , Lisina , Mamíferos/metabolismo , Camundongos , Calicreína Plasmática , Plasminogênio/genética , Plasminogênio/metabolismo , Ativador de Plasminogênio TecidualRESUMO
Factor XII (FXII) is the zymogen of a plasma protease (FXIIa) that contributes to bradykinin generation by converting prekallikrein to the protease plasma kallikrein (PKa). FXII conversion to FXIIa by autocatalysis or PKa-mediated cleavage is enhanced when the protein binds to negatively charged surfaces such as polymeric orthophosphate. FXII is composed of noncatalytic (heavy chain) and catalytic (light chain) regions. The heavy chain promotes FXII surface-binding and surface-dependent activation but restricts activation when FXII is not surface bound. From the N terminus, the heavy chain contains fibronectin type 2 (FN2), epidermal growth factor-1 (EGF1), fibronectin type 1 (FN1), EGF2, and kringle (KNG) domains and a proline-rich region. It shares this organization with its homolog, pro-hepatocyte growth factor activator (Pro-HGFA). To study the importance of heavy chain domains in FXII function, we prepared FXII with replacements of each domain with corresponding Pro-HGFA domains and tested them in activation and activity assays. EGF1 is required for surface-dependent FXII autoactivation and surface-dependent prekallikrein activation by FXIIa. KNG and FN2 are important for limiting FXII activation in the absence of a surface by a process that may require interactions between a lysine/arginine binding site on KNG and basic residues elsewhere on FXII. This interaction is disrupted by the lysine analog ε-aminocaproic acid. A model is proposed in which an ε-aminocaproic acid-sensitive interaction between the KNG and FN2 domains maintains FXII in a conformation that restricts activation. Upon binding to a surface through EGF1, the KNG/FN2-dependent mechanism is inactivated, exposing the FXII activation cleavage site.
Assuntos
Fator XII , Pré-Calicreína , Ácido Aminocaproico , Coagulação Sanguínea , Fator XII/química , Fibronectinas/química , Lisina , Pré-Calicreína/química , Pré-Calicreína/metabolismoRESUMO
BACKGROUND & AIMS: The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS: C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS: hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS: We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.
Assuntos
Clostridioides difficile/efeitos dos fármacos , Enterocolite Pseudomembranosa/etiologia , Enterocolite Pseudomembranosa/patologia , Plasminogênio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Intestino Delgado , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Ruthenium-catalysed azide-alkyne cycloaddition (RuAAC) provides access to 1,5-disubstituted 1,2,3-triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross-linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor-1. NMR and X-ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5â Å) of the triazole linkages compared to the parent disulfide molecules. The triazole-bridged peptides also displayed superior half-lives in liver S9 stability assays compared to disulfide-bridged peptides. This work establishes a foundation for the application of 1,5-disubstituted 1,2,3-triazoles as disulfide mimetics.
Assuntos
Dissulfetos/química , Mimetismo Molecular , Peptídeos Cíclicos/química , Triazóis/química , Sequência de Aminoácidos , Cristalografia por Raios X , Ciclização , Ressonância Magnética Nuclear Biomolecular , Rutênio/químicaRESUMO
Background: CUB domain-containing protein 1 (CDCP1) is a cell surface receptor regulating key signalling pathways in malignant cells. CDCP1 has been proposed as a molecular target to abrogate oncogenic signalling pathways and specifically deliver anti-cancer agents to tumors. However, the development of CDCP1-targeting agents has been questioned by its frequent proteolytic processing which was thought to result in shedding of the CDCP1 extracellular domain limiting its targetability. In this study, we investigated the relevance of targeting CDCP1 in the context of pancreatic ductal adenocarcinoma (PDAC) and assess the impact of CDCP1 proteolysis on the effectiveness of CDCP1 targeting agents. Methods: The involvement of CDCP1 in PDAC progression was assessed by association analysis in several PDAC cohorts and the proteolytic processing of CDCP1 was evaluated in PDAC cell lines and patient-derived cells. The consequences of CDCP1 proteolysis on its targetability in PDAC cells was assessed using immunoprecipitation, immunostaining and biochemical assays. The involvement of CDCP1 in PDAC progression was examined by loss-of-function in vitro and in vivo experiments employing PDAC cells expressing intact or cleaved CDCP1. Finally, we generated antibody-based imaging and therapeutic agents targeting CDCP1 to demonstrate the feasibility of targeting this receptor for detection and treatment of PDAC tumors. Results: High CDCP1 expression in PDAC is significantly associated with poorer patient survival. In PDAC cells proteolysis of CDCP1 does not always result in the shedding of CDCP1-extracellular domain which can interact with membrane-bound CDCP1 allowing signal transduction between the different CDCP1-fragments. Targeting CDCP1 impairs PDAC cell functions and PDAC tumor growth independently of CDCP1 cleavage status. A CDCP1-targeting antibody is highly effective at delivering imaging radionuclides and cytotoxins to PDAC cells allowing specific detection of tumors by PET/CT imaging and superior anti-tumor effects compared to gemcitabine in in vivo models. Conclusion: Independent of its cleavage status, CDCP1 exerts oncogenic functions in PDAC and has significant potential to be targeted for improved radiological staging and treatment of this cancer. Its elevated expression by most PDAC tumors and lack of expression by normal pancreas and other major organs, suggest that targeting CDCP1 could benefit a significant proportion of PDAC patients. These data support the further development of CDCP1-targeting agents as personalizable tools for effective imaging and treatment of PDAC.
Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/terapia , Medicina de Precisão , ProteóliseRESUMO
CUB-domain containing protein 1 (CDCP1) is a cancer associated cell surface protein that amplifies pro-tumorigenic signalling by other receptors including EGFR and HER2. Its potential as a cancer target is supported by studies showing that anti-CDCP1 antibodies inhibit cell migration and survival in vitro, and tumor growth and metastasis in vivo. Here we characterize two anti-CDCP1 antibodies, focusing on immuno-conjugates of one of these as a tool to detect and inhibit ovarian cancer. Methods: A panel of ovarian cancer cell lines was examined for cell surface expression of CDCP1 and loss of expression induced by anti-CDCP1 antibodies 10D7 and 41-2 using flow cytometry and Western blot analysis. Surface plasmon resonance analysis and examination of truncation mutants was used to analyse the binding properties of the antibodies for CDCP1. Live-cell spinning-disk confocal microscopy of GFP-tagged CDCP1 was used to track internalization and intracellular trafficking of CDCP1/antibody complexes. In vivo, zirconium 89-labelled 10D7 was detected by positron-emission tomography imaging, of an ovarian cancer patient-derived xenograft grown intraperitoneally in mice. The efficacy of cytotoxin-conjugated 10D7 was examined against ovarian cancer cells in vitro and in vivo. Results: Our data indicate that each antibody binds with high affinity to the extracellular domain of CDCP1 causing rapid internalization of the receptor/antibody complex and degradation of CDCP1 via processes mediated by the kinase Src. Highlighting the potential clinical utility of CDCP1, positron-emission tomography imaging, using zirconium 89-labelled 10D7, was able to detect subcutaneous and intraperitoneal xenograft ovarian cancers in mice, including small (diameter <3 mm) tumor deposits of an ovarian cancer patient-derived xenograft grown intraperitoneally in mice. Furthermore, cytotoxin-conjugated 10D7 was effective at inhibiting growth of CDCP1-expressing ovarian cancer cells in vitro and in vivo. Conclusions: These data demonstrate that CDCP1 internalizing antibodies have potential for killing and detection of CDCP1 expressing ovarian cancer cells.
Assuntos
Moléculas de Adesão Celular/antagonistas & inibidores , Imunoconjugados/imunologia , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Animais , Antígenos de Neoplasias/imunologia , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/imunologia , Feminino , Camundongos , Modelos Animais , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Radioisótopos/metabolismo , Transplante Heterólogo/métodos , Zircônio/química , Zircônio/metabolismo , Quinases da Família src/metabolismoRESUMO
Macrophage-expressed gene 1 (MPEG1/Perforin-2) is a perforin-like protein that functions within the phagolysosome to damage engulfed microbes. MPEG1 is thought to form pores in target membranes, however, its mode of action remains unknown. We use cryo-Electron Microscopy (cryo-EM) to determine the 2.4 Å structure of a hexadecameric assembly of MPEG1 that displays the expected features of a soluble prepore complex. We further discover that MPEG1 prepore-like assemblies can be induced to perforate membranes through acidification, such as would occur within maturing phagolysosomes. We next solve the 3.6 Å cryo-EM structure of MPEG1 in complex with liposomes. These data reveal that a multi-vesicular body of 12 kDa (MVB12)-associated ß-prism (MABP) domain binds membranes such that the pore-forming machinery of MPEG1 is oriented away from the bound membrane. This unexpected mechanism of membrane interaction suggests that MPEG1 remains bound to the phagolysosome membrane while simultaneously forming pores in engulfed bacterial targets.
Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Bactérias/imunologia , Microscopia Crioeletrônica , Humanos , Lipossomos/metabolismo , Lisossomos/fisiologia , Macrófagos/imunologia , Microscopia de Força Atômica , Domínios Proteicos , Estrutura Secundária de ProteínaRESUMO
VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.
Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de ProteínaRESUMO
Plasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats). To date, the molecular interactions between the a1 repeat and KR2 have been structurally characterized, whereas the role of the a2 repeat is less well defined. Here, we report the 1.7-Å x-ray crystal structure of KR2 in complex with a monomeric PAM peptide that contains both the a1 and a2 motifs. The structure reveals how the PAM peptide forms key interactions simultaneously with two KR2 via the high-affinity lysine isosteres within the a1a2 motifs. Further studies, through combined mutagenesis and functional characterization, show that a2 is a stronger KR2 binder than a1, suggesting that these two motifs may play discrete roles in mediating the final PAM-Plg assembly.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Streptococcus pyogenes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Relação Estrutura-AtividadeRESUMO
Plasminogen (Plg) is the zymogen form of the serine protease plasmin (Plm), and it plays a crucial role in fibrinolysis as well as wound healing, immunity, tissue remodeling and inflammation. Binding to the targets via the lysine-binding sites allows for Plg activation by plasminogen activators (PAs) present on the same target. Cellular uptake of fibrin degradation products leads to apoptosis, which represents one of the pathways for cross-talk between fibrinolysis and tissue remodeling. Therapeutic manipulation of Plm activity plays a vital role in the treatments of a range of diseases, whereas Plm inhibitors are used in trauma and surgeries as antifibrinolytic agents. Plm inhibitors are also used in conditions such as angioedema, menorrhagia and melasma. Here, we review the rationale for the further development of new Plm inhibitors, with a particular focus on the structural studies of the active site inhibitors of Plm. We compare the binding mode of different classes of inhibitors and comment on how it relates to their efficacy, as well as possible future developments.
Assuntos
Plasminogênio/metabolismo , Animais , Antifibrinolíticos/farmacologia , Apoptose/genética , Apoptose/fisiologia , Humanos , Plasminogênio/genética , Ativadores de Plasminogênio/farmacologia , Inibidores de Proteases/farmacologia , Transdução de Sinais/efeitos dos fármacosAssuntos
Ácido Tranexâmico/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Antifibrinolíticos , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Fibrinolisina , Humanos , Plasminogênio/metabolismo , Ácido Tranexâmico/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismoRESUMO
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are two serine proteases that contribute to initiating fibrinolysis by activating plasminogen. uPA is also an important tumour-associated protease due to its role in extracellular matrix remodelling. Overexpression of uPA has been identified in several different cancers and uPA inhibition has been reported as a promising therapeutic strategy. Although several peptide-based uPA inhibitors have been developed, the extent to which uPA tolerates different tetrapeptide sequences that span the P1-P4 positions remains to be thoroughly explored. In this study, we screened a sequence-defined peptide aldehyde library against uPA and tPA. Preferred sequences from the library screen yielded potent inhibitors for uPA, led by Ac-GTAR-H (Ki =18â nm), but not for tPA. Additionally, synthetic peptide substrates corresponding to preferred inhibitor sequences were cleaved with high catalytic efficiency by uPA but not by tPA. These findings provide new insights into the binding specificity of uPA and tPA and the relative activity of tetrapeptide inhibitors and substrates against these enzymes.
Assuntos
Aldeídos/química , Inibidores Enzimáticos/química , Peptídeos/química , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tipo Uroquinase/química , Aldeídos/síntese química , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Humanos , Biblioteca de Peptídeos , Peptídeos/síntese química , Especificidade por Substrato , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidoresRESUMO
Antifibrinolytic drugs provide important pharmacological interventions to reduce morbidity and mortality from excessive bleeding during surgery and after trauma. Current drugs used for inhibiting the dissolution of fibrin, the main structural component of blood clots, are associated with adverse events due to lack of potency, high doses, and nonselective inhibition mechanisms. These drawbacks warrant the development of a new generation of highly potent and selective fibrinolysis inhibitors. Here, we use the 14-amino acid backbone-cyclic sunflower trypsin inhibitor-1 scaffold to design a highly potent ( Ki = 0.05 nM) inhibitor of the primary serine protease in fibrinolysis, plasmin. This compound displays a million-fold selectivity over other serine proteases in blood, inhibits fibrinolysis in plasma more effectively than the gold-standard therapeutic inhibitor aprotinin, and is a promising candidate for development of highly specific fibrinolysis inhibitors with reduced side effects.