Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Antimicrob Chemother ; 78(1): 133-140, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36308324

RESUMO

BACKGROUND: Resistance nodulation division (RND) family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance. Expression of these pumps is carefully controlled by a network of regulators that respond to different environmental cues. EnvR is a TetR family transcriptional regulator encoded upstream of the RND efflux pump acrEF. METHODS: Binding of EnvR protein upstream of acrAB was determined by electrophoretic mobility shift assays and the phenotypic consequence of envR overexpression on antimicrobial susceptibility, biofilm motility and invasion of eukaryotic cells in vitro was measured. Additionally, the global transcriptome of clinical Salmonella isolates overexpressing envR was determined by RNA-Seq. RESULTS: EnvR bound to the promoter region upstream of the genes coding for the major efflux pump AcrAB in Salmonella, inhibiting transcription and preventing production of AcrAB protein. The phenotype conferred by overexpression of envR mimicked deletion of acrB as it conferred multidrug susceptibility, decreased motility and decreased invasion into intestinal cells in vitro. Importantly, we demonstrate the clinical relevance of this regulatory mechanism because RNA-Seq revealed that a drug-susceptible clinical isolate of Salmonella had low acrB expression even though expression of its major regulator RamA was very high; this was caused by very high EnvR expression. CONCLUSIONS: In summary, we show that EnvR is a potent repressor of acrAB transcription in Salmonella, and can override binding by RamA so preventing MDR to clinically useful drugs. Finding novel tools to increase EnvR expression may form the basis of a new way to prevent or treat MDR infections.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Salmonella typhimurium/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transcrição Gênica
2.
Trends Microbiol ; 28(9): 744-752, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32781028

RESUMO

The dormant resistant spores of Clostridioides difficile are transformed into metabolically active cells through the process of germination. Spore germination in C. difficile is regulated by the detection of bile salt germinants and amino acid cogerminants by pseudoproteases CspC and CspA, respectively. The germinant signal is transduced to the serine protease CspB, which processes the cortex lytic enzyme SleC, leading to degradation of the spore cortex peptidoglycan and subsequent reactivation of the spore. Divergent C. difficile germination models have been proposed to explain interactions between key regulators and transduction of germinant and cogerminant signals. This review summarises advances in understanding C. difficile germination and outlines current models of germination regulation.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Esporos Bacterianos/metabolismo
3.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665275

RESUMO

Active efflux of antibiotics preventing their accumulation to toxic intracellular concentrations contributes to clinically relevant multidrug resistance. Inhibition of active efflux potentiates antibiotic activity, indicating that efflux inhibitors could be used in combination with antibiotics to reverse drug resistance. Expression of ramA by Salmonella enterica serovar Typhimurium increases in response to efflux inhibition, irrespective of the mode of inhibition. We hypothesized that measuring ramA promoter activity could act as a reporter of efflux inhibition. A rapid, inexpensive, and high-throughput green fluorescent protein (GFP) screen to identify efflux inhibitors was developed, validated, and implemented. Two chemical compound libraries were screened for compounds that increased GFP production. Fifty of the compounds in the 1,200-compound Prestwick chemical library were identified as potential efflux inhibitors, including the previously characterized efflux inhibitors mefloquine and thioridazine. There were 107 hits from a library of 47,168 proprietary compounds from L. Hoffmann La Roche; 45 were confirmed hits, and a dose response was determined. Dye efflux and accumulation assays showed that 40 Roche and three Prestwick chemical library compounds were efflux inhibitors. Most compounds had specific efflux-inhibitor-antibiotic combinations and/or species-specific synergy in antibiotic disc diffusion and checkerboard assays performed with Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Salmonella Typhimurium. These data indicate that both narrow-spectrum and broad-spectrum combinations of efflux inhibitors with antibiotics can be found. Eleven novel efflux inhibitor compounds potentiated antibiotic activities against at least one species of Gram-negative bacteria, and data revealing an E. coli mutant with loss of AcrB function suggested that these are AcrB inhibitors.IMPORTANCE Multidrug-resistant Gram-negative bacteria pose a serious threat to human and animal health. Molecules that inhibit multidrug efflux offer an alternative approach to resolving the challenges caused by antibiotic resistance, by potentiating the activity of old, licensed, and new antibiotics. We have developed, validated, and implemented a high-throughput screen and used it to identify efflux inhibitors from two compound libraries selected for their high chemical and pharmacological diversity. We found that the new high-throughput screen is a valuable tool to identify efflux inhibitors, as evidenced by the 43 new efflux inhibitors described in this study.


Assuntos
Antibacterianos/farmacologia , Transporte Biológico/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas de Bactérias/genética , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transativadores/genética
4.
J Antimicrob Chemother ; 70(2): 424-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25288678

RESUMO

OBJECTIVES: Enterobacteriaceae have multiple efflux pumps that confer intrinsic resistance to antibiotics. AcrB mediates clinically relevant multidrug resistance and is required for virulence and biofilm formation, making it an attractive target for the design of inhibitors. The aim of this study was to assess the viability of single transporters as a target for efflux inhibition using Salmonella Typhimurium as the model pathogen. METHODS: The expression of resistance-nodulation-division (RND) efflux pump genes in response to the inactivation of single or multiple homologues was measured using real-time RT-PCR. Phenotypes of mutants were characterized by measuring antimicrobial susceptibility, dye accumulation and the ability to cause infection in vitro. RESULTS: The expression of all RND efflux pump genes was increased when single or multiple acr genes were inactivated, suggesting a feedback mechanism that activates the transcription of homologous efflux pump genes. When two or three acr genes were inactivated, the mutants had further reduced efflux, altered susceptibility to antimicrobials (including increased susceptibility to some, but conversely and counterintuitively, decreased susceptibility to some others) and were more attenuated in the tissue culture model than mutants lacking single pumps were. CONCLUSIONS: These data indicate that it is critical to understand which pumps an inhibitor is active against and the effect of this on the expression of homologous systems. For some antimicrobials, an inhibitor with activity against multiple pumps will have a greater impact on susceptibility, but an unintended consequence of this may be decreased susceptibility to other drugs, such as aminoglycosides.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Genótipo , Testes de Sensibilidade Microbiana , Família Multigênica , Mutação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA