Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6286, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813833

RESUMO

Altered vasoactivity is a major characteristic of cardiovascular and oncological diseases, and many therapies are therefore targeted to the vasculature. Therapeutics which are selective for the diseased vasculature are ideal, but whole-body selectivity of a therapeutic is challenging to assess in practice. Vessel myography is used to determine the functional mechanisms and evaluate pharmacological responses of vascularly-targeted therapeutics. However, myography can only be performed on ex vivo sections of individual arteries. We have developed methods for implementation of spherical-view photoacoustic tomography for non-invasive and in vivo myography. Using photoacoustic tomography, we demonstrate the measurement of acute vascular reactivity in the systemic vasculature and the placenta of female pregnant mice in response to two vasodilators. Photoacoustic tomography simultaneously captures the significant acute vasodilation of major arteries and detects selective vasoactivity of the maternal-fetal vasculature. Photoacoustic tomography has the potential to provide invaluable preclinical information on vascular response that cannot be obtained by other established methods.


Assuntos
Artérias , Vasodilatadores , Gravidez , Camundongos , Feminino , Animais , Artérias/diagnóstico por imagem , Artérias/fisiologia , Vasodilatação/fisiologia , Placenta/diagnóstico por imagem , Miografia/métodos
2.
J Biomed Opt ; 28(3): 036001, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36895414

RESUMO

Significance: To effectively study preclinical animal models, medical imaging technology must be developed with a high enough resolution and sensitivity to perform anatomical, functional, and molecular assessments. Photoacoustic (PA) tomography provides high resolution and specificity, and fluorescence (FL) molecular tomography provides high sensitivity; the combination of these imaging modes will enable a wide range of research applications to be studied in small animals. Aim: We introduce and characterize a dual-modality PA and FL imaging platform using in vivo and phantom experiments. Approach: The imaging platform's detection limits were characterized through phantom studies that determined the PA spatial resolution, PA sensitivity, optical spatial resolution, and FL sensitivity. Results: The system characterization yielded a PA spatial resolution of 173 ± 17 µ m in the transverse plane and 640 ± 120 µ m in the longitudinal axis, a PA sensitivity detection limit not less than that of a sample with absorption coefficient µ a = 0.258 cm - 1 , an optical spatial resolution of 70 µ m in the vertical axis and 112 µ m in the horizontal axis, and a FL sensitivity detection limit not < 0.9 µ M concentration of IR-800. The scanned animals displayed in three-dimensional renders showed high-resolution anatomical detail of organs. Conclusions: The combined PA and FL imaging system has been characterized and has demonstrated its ability to image mice in vivo, proving its suitability for biomedical imaging research applications.


Assuntos
Imagem Óptica , Técnicas Fotoacústicas , Animais , Camundongos , Imagem Óptica/métodos , Tomografia Computadorizada por Raios X , Tomografia , Análise Espectral , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos
3.
Photoacoustics ; 29: 100437, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36570471

RESUMO

Near-infrared photoacoustic imaging (NIR-PAI) combines the advantages of optical and ultrasound imaging to provide anatomical and functional information of tissues with high resolution. Although NIR-PAI is promising, its widespread use is hindered by the limited availability of NIR contrast agents. J-aggregates (JA) made of indocyanine green dye (ICG) represents an attractive class of biocompatible contrast agents for PAI. Here, we present a facile synthesis method that combines ICG and ICG-azide dyes for producing contrast agents with tunable size down to 230 nm and direct functionalization with targeting moieties. The ICG-JA platform has a detectable PA signal in vitro that is two times stronger than whole blood and high photostability. The targeting ability of ICG-JA was measured in vitro using HeLa cells. The ICG-JA platform was then injected into mice and in vivo NIR-PAI showed enhanced visualization of liver and spleen for 90 min post-injection with a contrast-to-noise ratio of 2.42.

4.
Placenta ; 126: 46-53, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764022

RESUMO

INTRODUCTION: There is a lack of effective therapeutic interventions for preeclampsia. A central factor in the etiology of the disease is the development of placental hypoxia due to abnormal vascular remodeling. However, methods to assess the impact of potential therapies on placental growth and remodeling are currently lacking. Here, we develop and validate ultrasound-guided photoacoustic imaging methods to monitor the placental response to therapeutic intervention. Establishing non-invasive tools to image placental function opens up previously unachievable understandings of placental therapeutic response. METHODS: Studies were performed in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. Preclinical research has identified tempol, a superoxide dismutase mimetic, and the phosphodiesterase inhibitor sildenafil as potential therapeutics for preeclampsia, as both improve in vivo maternal outcomes. PA images of the placental environment were acquired in RUPP rats receiving tempol (n = 8) or sildenafil (n = 8) to assess the longitudinal effects of treatment on placental oxygenation and vascular remodeling. Imaging measurements were validated with ex vivo histological analysis. RESULTS: Spectral photoacoustic imaging non-invasively measured placental hypoxia and impaired vascular growth two days after the RUPP procedure was implemented. Sildenafil significantly improved (p < 0.05) placental oxygenation and promoted vascular remodeling in RUPP animals, while RUPP animals treated with tempol had a diminished placental therapeutic response. DISCUSSION: We demonstrate that photoacoustic imaging provides in vivo measures of placental oxygenation and vascular remodeling, a previously unobtainable assessment of preeclamptic therapeutic response. These imaging tools have tremendous potential to accelerate the search for effective therapies for preeclampsia.


Assuntos
Técnicas Fotoacústicas , Pré-Eclâmpsia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hipóxia , Isquemia , Técnicas Fotoacústicas/efeitos adversos , Placenta/irrigação sanguínea , Pré-Eclâmpsia/diagnóstico por imagem , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/etiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Citrato de Sildenafila/farmacologia , Remodelação Vascular
6.
J Vis Exp ; (150)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31475982

RESUMO

The female reproductive organs, specifically the vagina and cervix, are composed of various cellular components and a unique extracellular matrix (ECM). Smooth muscle cells exhibit a contractile function within the vaginal and cervical walls. Depending on the biochemical environment and the mechanical distension of the organ walls, the smooth muscle cells alter the contractile conditions. The contribution of the smooth muscle cells under baseline physiological conditions is classified as a basal tone. More specifically, a basal tone is the baseline partial constriction of smooth muscle cells in the absence of hormonal and neural stimulation. Furthermore, the ECM provides structural support for the organ walls and functions as a reservoir for biochemical cues. These biochemical cues are vital to various organ functions, such as inciting growth and maintaining homeostasis. The ECM of each organ is composed primarily of collagen fibers (mostly collagen types I, III, and V), elastic fibers, and glycosaminoglycans/proteoglycans. The composition and organization of the ECM dictate the mechanical properties of each organ. A change in ECM composition may lead to the development of reproductive pathologies, such as pelvic organ prolapse or premature cervical remodeling. Furthermore, changes in ECM microstructure and stiffness may alter smooth muscle cell activity and phenotype, thus resulting in the loss of the contractile force. In this work, the reported protocols are used to assess the basal tone and passive mechanical properties of the nonpregnant murine vagina and cervix at 4-6 months of age in estrus. The organs were mounted in a commercially available pressure myograph and both pressure-diameter and force-length tests were performed. Sample data and data analysis techniques for the mechanical characterization of the reproductive organs are included. Such information may be useful for constructing mathematical models and rationally designing therapeutic interventions for women's health pathologies.


Assuntos
Colo do Útero/fisiologia , Miografia/métodos , Pressão , Útero/fisiologia , Vagina/fisiologia , Animais , Feminino , Fenômenos Mecânicos , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Miócitos de Músculo Liso/fisiologia
7.
Interface Focus ; 9(5): 20190024, 2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31485312

RESUMO

The placenta performs many physiological functions critical for development. Insufficient placental perfusion, due to improper vascular remodelling, has been linked to many pregnancy-related diseases. To study longitudinal in vivo placental perfusion, we have implemented a pixel-wise time-intensity curve (TIC) analysis of contrast-enhanced ultrasound (CEUS) images. CEUS images were acquired of pregnant Sprague Dawley rats after bolus injections of gas-filled microbubble contrast agents. Conventionally, perfusion can be quantified using a TIC of contrast enhancement in an averaged region of interest. However, the placenta has a complex structure and flow profile, which is insufficiently described using the conventional technique. In this work, we apply curve fitting in each pixel of the CEUS image series in order to quantify haemodynamic parameters in the placenta and surrounding tissue. The methods quantified an increase in mean placental blood volume and relative blood flow from gestational day (GD) 14 to GD18, while the mean transit time of the microbubbles decreased, demonstrating an overall rise in placental perfusion during gestation. The variance of all three parameters increased during gestation, showing that regional differences in perfusion are observable using the pixel-wise TIC approach. Additionally, the high-resolution parametric images show distinct regions of high blood flow developing during late gestation. The developed methods could be applied to assess placental vascular remodelling during the treatment of the pathologies of pregnancy.

8.
Interface Focus ; 9(4): 20190025, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31263538

RESUMO

Pelvic organ prolapse is characterized as the descent of the pelvic organs into the vaginal canal. In the USA, there is a 12% lifetime risk for requiring surgical intervention. Although vaginal childbirth is a well-established risk factor for prolapse, the underlying mechanisms are not fully understood. Decreased smooth muscle organization, composition and maximum muscle tone are characteristics of prolapsed vaginal tissue. Maximum muscle tone of the vaginal wall was previously investigated in the circumferential or axial direction under uniaxial loading; however, the vaginal wall is subjected to multiaxial loads. Further, the contribution of vaginal smooth muscle basal (resting) tone to mechanical function remains undetermined. The objectives of this study were to determine the contribution of smooth muscle basal and maximum tone to the regional biaxial mechanical behaviour of the murine vagina. Vaginal tissue from C57BL/6 mice was subjected to extension-inflation protocols (n = 10) with and without basal smooth muscle tone. Maximum tone was induced with KCl under various circumferential (n = 5) and axial (n = 5) loading conditions. The microstructure was visualized with multiphoton microscopy (n = 1), multiaxial histology (n = 4) and multiaxial immunohistochemistry (n = 4). Smooth muscle basal tone decreased material stiffness and increased anisotropy. In addition, maximum vaginal tone was decreased with increasing intraluminal pressures. This study demonstrated that vaginal muscle tone contributed to the biaxial mechanical response of murine vaginal tissue. This may be important in further elucidating the underlying mechanisms of prolapse, in order to improve current preventative and treatment strategies.

9.
Sci Rep ; 9(1): 558, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679723

RESUMO

Preeclampsia is a pregnancy-related hypertensive disorder accounting for 14% of global maternal deaths annually. Preeclampsia - maternal hypertension and proteinuria - is promoted by placental ischemia resulting from reduced uteroplacental perfusion. Here, we assess longitudinal changes in placental oxygenation during preeclampsia using spectral photoacoustic imaging. Spectral photoacoustic images were acquired of the placenta of normal pregnant (NP) and preeclamptic reduced uterine perfusion pressure (RUPP) Sprague Dawley rats on gestational days (GD) 14, 16, and 18, corresponding to mid- to late gestation (n = 10 per cohort). Two days after implementation of the RUPP surgical model, placental oxygen saturation decreased 12% in comparison with NP. Proteinuria was determined from a 24-hour urine collection prior to imaging on GD18. Blood pressure measurements were obtained on GD18 after imaging. Placental hypoxia in the RUPP was confirmed with histological staining for hypoxia-inducible factor (HIF)-1α, a cellular transcription regulator which responds to local oxygen levels. Using in vivo, longitudinal imaging methods we determined that the placenta in the reduced uterine perfusion pressure rat model of preeclampsia is hypoxic, and that this hypoxia is maintained through late gestation. Future work will utilize these methods to assess the impact of novel therapeutics on placental ischemia and the progression of preeclampsia.


Assuntos
Hipóxia Celular , Técnicas Fotoacústicas/métodos , Placenta/fisiopatologia , Circulação Placentária , Pré-Eclâmpsia/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/fisiopatologia , Estudos Longitudinais , Oxigênio/metabolismo , Gravidez , Proteinúria , Ratos , Ratos Sprague-Dawley , Útero/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA