Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931643

RESUMO

The article deals with the issue of detecting cyberattacks on control algorithms running in a real Programmable Logic Controller (PLC) and controlling a real laboratory control plant. The vulnerability of the widely used Proportional-Integral-Derivative (PID) controller is investigated. Four effective, easy-to-implement, and relatively robust methods for detecting attacks on the control signal, output variable, and parameters of the PID controller are researched. The first method verifies whether the value of the control signal sent to the control plant in the previous step is the actual value generated by the controller. The second method relies on detecting sudden, unusual changes in output variables, taking into account the inertial nature of dynamic plants. In the third method, a copy of the controller parameters is used to detect an attack on the controller's parameters implemented in the PLC. The fourth method uses the golden run in attack detection.

2.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067912

RESUMO

The Wiener model, composed of a linear dynamical block and a nonlinear static one connected in series, is frequently used for prediction in Model Predictive Control (MPC) algorithms. The parallel structure is an extension of the classical Wiener model; it is expected to offer better modeling accuracy and increase the MPC control quality. This work discusses the benefits of using the parallel Wiener model in MPC. It has three objectives. Firstly, it describes a fast MPC algorithm in which parallel Wiener models are used for online prediction. In the presented approach, sophisticated trajectory linearization is performed online, which leads to computationally fast quadratic optimization. The second objective of this work is to study the influence of the model structure on modeling accuracy. The well-known neutralization benchmark process is considered. It is shown that the parallel Wiener models in the open-loop mode generate significantly fewer errors than the classical structure. This work's third objective is to validate the efficiency of parallel Wiener models in closed-loop MPC. For the neutralization process, it is demonstrated that parallel models demonstrate better control quality using various indicators, but the difference between the classical and parallel models is not significant.

3.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960598

RESUMO

This work has two objectives. Firstly, it describes a novel physics-informed hybrid neural network (PIHNN) model based on the long short-term memory (LSTM) neural network. The presented model structure combines the first-principle process description and data-driven neural sub-models using a specialized data fusion block that relies on fuzzy logic. The second objective of this work is to detail a computationally efficient model predictive control (MPC) algorithm that employs the PIHNN model. The validity of the presented modeling and MPC approaches is demonstrated for a simulated polymerization reactor. It is shown that the PIHNN structure gives very good modeling results, while the MPC controller results in excellent control quality.

4.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571561

RESUMO

This work is concerned with the vulnerability of a network industrial control system to cyber-attacks, which is a critical issue nowadays. This is because an attack on a controlled process can damage or destroy it. These attacks use long short-term memory (LSTM) neural networks, which model dynamical processes. This means that the attacker may not know the physical nature of the process; an LSTM network is sufficient to mislead the process operator. Our experimental studies were conducted in an industrial control network containing a magnetic levitation process. The model training, evaluation, and structure selection are described. The chosen LSTM network very well mimicked the considered process. Finally, based on the obtained results, we formulated possible protection methods against the considered types of cyber-attack.

5.
ISA Trans ; 134: 336-356, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36153191

RESUMO

A new approach to nonlinear Model Predictive Control (MPC) is discussed in this work. A custom user-defined cost function is used in place of the typically considered quadratic norm. An approximator of the cost function is applied to obtain a computationally simple procedure and linearization of two trajectories is carried out online. The predicted output trajectory of the approximator and the predicted trajectory of the manipulated variable, both over the prediction horizon, are repeatedly linearized online. It yields a simple quadratic programming task. The algorithm is implemented for a simulated neutralization benchmark modeled by a neural Wiener model. The resulting control quality is excellent, identical to that observed in the MPC scheme with nonlinear optimization. Validity of the described MPC algorithms is demonstrated when only simple box constraints are considered on the process input variable and in a more demanding case when additional soft limitations are put on the predicted output. Two structures of the approximator are compared: polynomial and neural; the advantages of the latter one are shown and stressed.

6.
Sensors (Basel) ; 22(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062639

RESUMO

The digital twins technology delivers a new degree of freedom into system implementation and maintenance practice. Using this approach, a technological system can be efficiently modeled and simulated. Furthermore, such a twin offline system can be efficiently used to investigate real system issues and improvement opportunities, e.g., improvement of the existing control system or development of a new one. This work describes the development of a control system using the digital twins methodology for a gas system delivering a specific mixture of gases to the time-of-flight (ToF) multipurpose detector (MPD) used during high-energy physics experiments in the Joint Institute for Nuclear Research (Dubna, Russia). The gas system digital twin was built using a test stand and further extended into target full-scale installation planned to be built in the near future. Therefore, conducted simulations are used to validate the existing system and to allow validation of the planned new system. Moreover, the gas system digital twin enables testing of new control opportunities, improving the operation of the target gas system.

7.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502727

RESUMO

Model Predictive Control (MPC) algorithms typically use the classical L2 cost function, which minimises squared differences of predicted control errors. Such an approach has good numerical properties, but the L1 norm that measures absolute values of the control errors gives better control quality. If a nonlinear model is used for prediction, the L1 norm leads to a difficult, nonlinear, possibly non-differentiable cost function. A computationally efficient alternative is discussed in this work. The solution used consists of two concepts: (a) a neural approximator is used in place of the non-differentiable absolute value function; (b) an advanced trajectory linearisation is performed on-line. As a result, an easy-to-solve quadratic optimisation task is obtained in place of the nonlinear one. Advantages of the presented solution are discussed for a simulated neutralisation benchmark. It is shown that the obtained trajectories are very similar, practically the same, as those possible in the reference scheme with nonlinear optimisation. Furthermore, the L1 norm even gives better performance than the classical L2 one in terms of the classical control performance indicator that measures squared control errors.


Assuntos
Algoritmos , Dinâmica não Linear
8.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451065

RESUMO

This work thoroughly compares the efficiency of Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Unit (GRU) neural networks as models of the dynamical processes used in Model Predictive Control (MPC). Two simulated industrial processes were considered: a polymerisation reactor and a neutralisation (pH) process. First, MPC prediction equations for both types of models were derived. Next, the efficiency of the LSTM and GRU models was compared for a number of model configurations. The influence of the order of dynamics and the number of neurons on the model accuracy was analysed. Finally, the efficiency of the considered models when used in MPC was assessed. The influence of the model structure on different control quality indicators and the calculation time was discussed. It was found that the GRU network, although it had a lower number of parameters than the LSTM one, may be successfully used in MPC without any significant deterioration of control quality.


Assuntos
Memória de Longo Prazo , Redes Neurais de Computação
9.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201376

RESUMO

This work is concerned with an original ball-on-plate laboratory process. First, a simplified process model based on state-space process description is derived. Next, a fast state-space MPC algorithm is discussed. Its main advantage is computational simplicity: the manipulated variables are found on-line using explicit formulas with parameters calculated off-line; no real-time optimization is necessary. Software and hardware implementation details of the considered MPC algorithm using the STM32 microcontroller are presented. Tuning of the fast MPC algorithm is discussed. To show the efficacy of the MPC algorithm, it is compared with the classical PID and LQR controllers.

10.
ISA Trans ; 99: 270-289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31676035

RESUMO

Control of Solid Oxide Fuel Cells (SOFCs) is a challenging task since they are nonlinear dynamic systems and it is essential to precisely satisfy the existing technological constraints which must be imposed on the manipulated variable (the fuel flow) and on fuel utilisation. This paper details a constrained computationally efficient nonlinear Model Predictive Control (MPC) algorithm for the SOFC process. The predicted voltage and fuel utilisation trajectories are successively linearised on-line which leads to a simple to solve quadratic optimisation MPC problem. The emphasis is put on three aspects: (a) selection of tuning parameters, (b) feasibility of the constrained MPC optimisation problem, (c) good control quality and low computational burden. At first, tuning is thoroughly described. It is demonstrated that soft fuel utilisation constraints lead to feasible MPC optimisation. It is shown that control accuracy and constraints' satisfaction ability of the algorithm are very similar to those of the "ideal" MPC strategy with nonlinear on-line optimisation, but its computational burden is much lower. Finally, it is shown that the algorithm is much more precise than the simple MPC algorithm with successive on-line model linearisation and the classical MPC algorithm based on a parameter-constant linear model.

11.
ISA Trans ; 67: 476-495, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28153541

RESUMO

This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant.

12.
ISA Trans ; 55: 49-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25451816

RESUMO

This paper discusses a nonlinear Model Predictive Control (MPC) algorithm for multiple-input multiple-output dynamic systems represented by cascade Hammerstein-Wiener models. The block-oriented Hammerstein-Wiener model, which consists of a linear dynamic block embedded between two nonlinear steady-state blocks, may be successfully used to describe numerous processes. A direct application of such a model for prediction in MPC results in a nonlinear optimisation problem which must be solved at each sampling instant on-line. To reduce the computational burden, a linear approximation of the predicted system trajectory linearised along the future control scenario is successively found on-line and used for prediction. Thanks to linearisation, the presented algorithm needs only quadratic optimisation, time-consuming and difficult on-line nonlinear optimisation is not necessary. In contrast to some control approaches for cascade models, the presented algorithm does not need inverse of the steady-state blocks of the model. For two benchmark systems, it is demonstrated that the algorithm gives control accuracy very similar to that obtained in the MPC approach with nonlinear optimisation while performance of linear MPC and MPC with simplified linearisation is much worse.

13.
Bioprocess Biosyst Eng ; 32(3): 301-12, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18668266

RESUMO

This paper describes the application of artificial neural networks to modelling and control of a continuous fermentor. A computationally efficient nonlinear model predictive control (MPC) algorithm with nonlinear prediction and linearisation (MPC-NPL) which needs solving on-line a quadratic programming problem is developed. It is demonstrated that the algorithm results in closed-loop control performance similar to that obtained in nonlinear MPC, which hinges on full on-line non-convex optimisation. The computational complexity of the MPC-NPL algorithm is shown, control accuracy and robustness are also demonstrated in the case of noisy measurements and disturbances affecting the process.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biopolímeros/metabolismo , Reatores Biológicos/microbiologia , Modelos Biológicos , Redes Neurais de Computação , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Simulação por Computador , Retroalimentação/fisiologia , Modelos Estatísticos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA