Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(15): 5744-5756, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35377149

RESUMO

Zirconolite is considered to be a suitable wasteform material for the immobilization of Pu and other minor actinide species produced through advanced nuclear separations. Here, we present a comprehensive investigation of Dy3+ incorporation within the self-charge balancing zirconolite Ca1-xZr1-xDy2xTi2O7 solid solution, with the view to simulate trivalent minor actinide immobilization. Compositions in the substitution range 0.10 ≤ x ≤ 1.00 (Δx = 0.10) were fabricated by a conventional mixed oxide synthesis, with a two-step sintering regime at 1400 °C in air for 48 h. Three distinct coexisting phase fields were identified, with single-phase zirconolite-2M identified only for x = 0.10. A structural transformation from zirconolite-2M to zirconolite-4M occurred in the range 0.20 ≤ x ≤ 0.30, while a mixed-phase assemblage of zirconolite-4M and cubic pyrochlore was evident at Dy concentrations 0.40 ≤ x ≤ 0.50. Compositions for which x ≥ 0.60 were consistent with single-phase pyrochlore. The formation of zirconolite-4M and pyrochlore polytype phases, with increasing Dy content, was confirmed by high-resolution transmission electron microscopy, coupled with selected area electron diffraction. Analysis of the Dy L3-edge XANES region confirmed that Dy was present uniformly as Dy3+, remaining analogous to Am3+. Fitting of the EXAFS region was consistent with Dy3+ cations distributed across both Ca2+ and Zr4+ sites in both zirconolite-2M and 4M, in agreement with the targeted self-compensating substitution scheme, whereas Dy3+ was 8-fold coordinated in the pyrochlore structure. The observed phase fields were contextualized within the existing literature, demonstrating that phase transitions in CaZrTi2O7-REE3+Ti2O7 binary solid solutions are fundamentally controlled by the ratio of ionic radius of REE3+ cations.

2.
Inorg Chem ; 60(4): 2553-2562, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33491452

RESUMO

Low-temperature soft chemical synthesis routes to transition-metal nitrides are of interest as an alternative to conventional high-temperature ammonolysis reactions involving large volumes of chemotoxic NH3 gas. One such method is the reaction between metal oxides and NaNH2 at ca. 200 °C to yield the counterpart nitrides; however, there remains uncertainty regarding the reaction mechanism and product phase assemblage (in particular, noncrystalline components). Here, we extend the chemical tool box and mechanistic understanding of such reactions, demonstrating the nitridation of Fe3O4 by reaction with NaNH2 at 170-190 °C, via a pseudomorphic reaction. The more reduced Fe3O4 precursor enabled nitride formation at lower temperatures than the previously reported equivalent reaction with Fe2O3. The product phase assemblage, characterized by X-ray diffraction, thermogravimetric analysis, and 57Fe Mössbauer spectroscopy, comprised 49-59 mol % ε-Fe2+xN, accompanied by 29-39 mol % FeO1-xNx and 8-14 mol % γ″-FeN. The oxynitride phase was apparently noncrystalline in the recovered product but could be crystallized by heating at 180 °C. Although synthesis of transition-metal nitrides is achieved by reaction of the counterpart oxide with NaNH2, it is evident from this investigation that the product phase assemblage may be complex, which could prove a limitation if the objective is to produce a single-phase product with well-defined electrical, magnetic, or other physical properties for applications. However, the significant yield of the FeO1-xNx oxynitride phase identified in this study opens the possibility for the synthesis of metastable oxynitride phases in high yield, by reaction of a metal oxide substrate with NaNH2, with either careful control of H2O concentration in the system or postsynthetic hydrolysis and crystallization.

3.
Inorg Chem ; 60(1): 195-205, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315376

RESUMO

Struvite-K (MgKPO4·6H2O) is a magnesium potassium phosphate mineral with naturally cementitious properties, which is finding increasing usage as an inorganic cement for niche applications including nuclear waste management and rapid road repair. Struvite-K is also of interest in sustainable phosphate recovery from wastewater and, as such, a detailed knowledge of the crystal chemistry and high-temperature behavior is required to support further laboratory investigations and industrial applications. In this study, the local chemical environments of synthetic struvite-K were investigated using high-field solid-state 25Mg and 39K MAS NMR techniques, alongside 31P MAS NMR and thermal analysis. A single resonance was present in each of the 25Mg and 39K MAS NMR spectra, reported here for the first time alongside the experimental and calculated isotropic chemical shifts, which were comparable to the available data for isostructural struvite (MgNH4PO4·6H2O). An in situ high-temperature XRD analysis of struvite-K revealed the presence of a crystalline-amorphous-crystalline transition that occurred between 30 and 350 °C, following the single dehydration step of struvite-K. Between 50 and 300 °C, struvite-K dehydration yielded a transient disordered (amorphous) phase identified here for the first time, denoted δ-MgKPO4. At 350 °C, recrystallization was observed, yielding ß-MgKPO4, commensurate with an endothermic DTA event. A subsequent phase transition to γ-MgKPO4 was observed on further heating, which reversed on cooling, resulting in the α-MgKPO4 structure stabilized at room temperature. This behavior was dissimilar from that of struvite exposed to high temperature, where NH4 liberation occurs at temperatures >50 °C, indicating that struvite-K could potentially withstand high temperatures via a transition to MgKPO4.

4.
Inorg Chem ; 55(19): 9937-9948, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27631169

RESUMO

The vacancy ordering behavior of an A-site deficient perovskite system, Ca1-xLa2x/3TiO3, was studied using atomic resolution scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), with the aim of determining the role of A-site composition changes. At low La content (x = 0.2), adopting Pbnm symmetry, there was no indication of long-range ordering. Domains, with clear boundaries, were observed in bright-field (BF) imaging, but were not immediately visible in the corresponding high-angle annular dark-field (HAADF) image. These boundaries, with the aid of displacement maps from A-site cations in the HAADF signal, are shown to be tilt boundaries. At the La-rich end of the composition (x = 0.9), adopting Cmmm symmetry, long-range ordering of vacancies and La3+ ions was observed, with alternating La-rich and La-poor layers on (001)p planes, creating a double perovskite lattice along the c axis. These highly ordered domains can be found isolated within a random distribution of vacancies/La3+, or within a large population, encompassing a large volume. In regions with a high number density of double perovskite domains, these highly ordered domains were separated by twin boundaries, with 90° or 180° lattice rotations across boundaries. The occurrence and characteristics of these ordered structures are discussed and compared with similar perovskite systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA