Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Rheumatol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858605

RESUMO

Joint kinematic instability, arising from congenital or acquired musculoskeletal pathoanatomy or from imbalances in anabolism and catabolism induced by pathophysiological factors, leads to deterioration of the composition, structure and function of cartilage and, ultimately, progression to osteoarthritis (OA). Alongside articular cartilage degeneration, synovial fluid lubricity decreases in OA owing to a reduction in the concentration and molecular weight of hyaluronic acid and surface-active mucinous glycoproteins that form a lubricating film over the articulating joint surfaces. Minimizing friction between articulating joint surfaces by lubrication is fundamental for decreasing hyaline cartilage wear and for maintaining the function of synovial joints. Augmentation with highly viscous supplements (that is, viscosupplementation) offers one approach to re-establishing the rheological and tribological properties of synovial fluid in OA. However, this approach has varied clinical outcomes owing to limited intra-articular residence time and ineffective mechanisms of chondroprotection. This Review discusses normal hyaline cartilage function and lubrication and examines the advantages and disadvantages of various strategies for restoring normal joint lubrication. These strategies include contemporary viscosupplements that contain antioxidants, anti-inflammatory drugs or platelet-rich plasma and new synthetic synovial fluid additives and cartilage matrix enhancers. Advanced biomimetic tribosupplements offer promise for mitigating cartilage wear, restoring joint function and, ultimately, improving patient care.

2.
J Orthop Res ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715519

RESUMO

Cationic contrast-enhanced computed tomography (CECT) capitalizes on increased contrast agent affinity to the charged proteoglycans in articular cartilage matrix to provide quantitative assessment of proteoglycan content with enhanced images. While high resolution microCT has demonstrated success, we investigate cationic CECT use in longitudinal in vivo imaging at clinical resolution. We hypothesize that repeated administration of CA4+ will have no adverse side effects or complications, and that sequential in vivo imaging assessments will distinguish articular cartilage repair tissue from early degenerative and healthy cartilage in critically sized chondral defects. In an established equine translational preclinical model, lameness and synovial effusion scores are similar to controls after repeated injections of CA4+ (eight injections over 16 weeks) compared to controls. Synovial fluid total protein, leukocyte concentration, and sGAG and PGE2 concentrations and articular cartilage and synovial membrane scores are also equivalent to controls. Longitudinal in vivo cationic CECT attenuation in repair tissue is significantly lower than peripheral to (adjacent) and distantly from defects (remote sites) by 4 weeks (p < 0.001), and this difference persists until 16 weeks. At the 6- and 8-week time points, the adjacent locations exhibit significantly lower cationic CECT attenuation compared with the remote sites, reflecting peri-defect degeneration (p < 0.01). Cationic CECT attenuation at clinical resolution significantly correlates with cationic CECT (microCT) (r = 0.69, p < 0.0001), sGAG (r = 0.48, p < 0.0001), and ICRS II histology score (r = 0.63, p < 0.0001). In vivo cationic CECT imaging at clinical resolution distinguishes fibrous repair tissue from degenerative and healthy hyaline cartilage and correlates with molecular tissue properties of articular cartilage.

3.
J Orthop Res ; 39(3): 465-472, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32827322

RESUMO

Osteoarthritis (OA) is a disease of the entire joint, often triggered by cartilage injury, mediated by a cascade of inflammatory pathways involving a complex interplay among metabolic, genetic, and enzymatic factors that alter the biochemical composition, microstructure, and biomechanical performance. Clinically, OA is characterized by degradation of the articular cartilage, thickening of the subchondral bone, inflammation of the synovium, and degeneration of ligaments that in aggregate reduce joint function and diminish quality of life. OA is the most prevalent joint disease, affecting 140 million people worldwide; these numbers are only expected to increase, concomitant with societal and financial burden of care. We present a two-part review encompassing the applications of nanotechnology to the diagnosis and treatment of OA. Herein, part 1 focuses on OA treatment options and advancements in nanotechnology for the diagnosis of OA and imaging of articular cartilage, while part 2 (10.1002/jor.24842) summarizes recent advances in drug delivery, tissue scaffolds, and gene therapy for the treatment of OA. Specifically, part 1 begins with a concise review of the clinical landscape of OA, along with current diagnosis and treatments. We next review nanoparticle contrast agents for minimally invasive detection, diagnosis, and monitoring of OA via magnetic resonace imaging, computed tomography, and photoacoustic imaging techniques as well as for probes for cell tracking. We conclude by identifying opportunities for nanomedicine advances, and future prospects for imaging and diagnostics.


Assuntos
Nanotecnologia/tendências , Osteoartrite/diagnóstico , Rastreamento de Células/métodos , Condrócitos , Humanos , Células-Tronco
4.
J Orthop Res ; 39(3): 473-484, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32860444

RESUMO

Osteoarthritis (OA) is a multifactorial disease of the entire joint which afflicts 140 million individuals worldwide regardless of economic or social status. Current clinical treatments for OA primarily center on reducing pain and increasing mobility, and there are limited therapeutic interventions to restore degraded cartilage or slow disease pathogenesis. This second installment of a two-part review on nanotechnology and OA focuses on novel treatment strategies. Specifically, Part 2 first discusses current surgical and nonsurgical treatments for OA and then summarizes recent advancements in nanotechnology-based treatments, while Part 1 (10.1002/jor.24817) described advances in imaging and diagnostics. We review nano delivery systems for small molecule drugs, nucleic acids, and proteins followed by nano-based scaffolds for neocartilage formation and osteochondral regeneration, and lastly nanoparticle lubricants. We conclude by identifying opportunities for nanomedicine advances, and prospects for OA treatments.


Assuntos
Nanotecnologia/tendências , Osteoartrite/terapia , Regeneração Óssea , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Humanos , Alicerces Teciduais
5.
J Orthop Res ; 39(8): 1647-1657, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33104251

RESUMO

Cationic contrast-enhanced computed tomography (CECT) is a quantitative imaging technique that characterizes articular cartilage, though its efficacy in differentiating repair tissue from other disease states is undetermined. We hypothesized that cationic CECT attenuation will distinguish between reparative, degenerative, and healthy equine articular cartilage and will reflect biochemical, mechanical, and histologic properties. Chondral defects were created in vivo on equine femoropatellar joint surfaces. Within defects, calcified cartilage was retained (Repair 1) or removed (Repair 2). At sacrifice, plugs were collected from within defects, and at locations bordering (adjacent site) and remote to defects along with site-matched controls. Articular cartilage was analyzed via CECT using CA4+ to assess glycosaminoglycan (GAG) content, compressive modulus (E eq ), and International Cartilage Repair Society (ICRS) II histologic score. Comparisons of variables were made between sites using mixed model analysis and between variables with correlations. Cationic CECT attenuation was significantly lower in Repair 1 (1478 ± 333 Hounsfield units [HUs]), Repair 2 (1229 ± 191 HUs), and adjacent (2139 ± 336 HUs) sites when compared with site-matched controls (2587 ± 298, 2505 ± 184, and 2563 ± 538 HUs, respectively; all p < .0001). Cationic CECT attenuation was significantly higher at remote sites (2928 ± 420 HUs) compared with Repair 1, Repair 2, and adjacent sites (all p < .0001). Cationic CECT attenuation correlated with ICRS II score (r = .79), GAG (r = .76), and E eq (r = .71; all p < .0001). Cationic CECT distinguishes between reparative, degenerative, and healthy articular cartilage and highly correlates with biochemical, mechanical, and histological tissue properties.


Assuntos
Cartilagem Articular , Animais , Cartilagem Articular/patologia , Cátions/análise , Meios de Contraste , Glicosaminoglicanos/análise , Cavalos , Tomografia Computadorizada por Raios X/métodos
6.
Nat Commun ; 11(1): 2139, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358489

RESUMO

A longstanding goal in science and engineering is to mimic the size, structure, and functionality present in biology with synthetic analogs. Today, synthetic globular polymers of several million molecular weight are unknown, and, yet, these structures are expected to exhibit unanticipated properties due to their size, compactness, and low inter-chain interactions. Here we report the gram-scale synthesis of dendritic polymers, mega hyperbranched polyglycerols (mega HPGs), in million daltons. The mega HPGs are highly water soluble, soft, nanometer-scale single polymer particles that exhibit low intrinsic viscosities. Further, the mega HPGs are lubricants acting as interposed single molecule ball bearings to reduce the coefficient of friction between both hard and soft natural surfaces in a size dependent manner. We attribute this result to their globular and single particle nature together with its exceptional hydration. Collectively, these results set the stage for new opportunities in the design, synthesis, and evaluation of mega polymers.


Assuntos
Dendrímeros/química , Glicerol/química , Lubrificantes/química , Nanotecnologia/métodos , Polímeros/química , Substâncias Macromoleculares/química , Propriedades de Superfície
7.
J Cardiovasc Dev Dis ; 5(1)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439517

RESUMO

Congenital heart defects (CHDs) represent the most common form of human birth defects; approximately one-third of heart defects involve malformations of the outflow tract (OFT). Maternal diabetes increases the risk of CHD by 3-5 fold. During heart organogenesis, little is known about the effects of hyperglycemia on hemodynamics, which are critical to normal heart development. Heart development prior to septation in the chick embryo was studied under hyperglycemic conditions. Sustained hyperglycemic conditions were induced, raising the average plasma glucose concentration from 70 mg/dL to 180 mg/dL, akin to the fasting plasma glucose of a patient with diabetes. The OFTs were assessed for structural and hemodynamic alterations using optical coherence tomography (OCT), confocal microscopy, and microcomputed tomography. In hyperglycemic embryos, the endocardial cushions of the proximal OFT were asymmetric, and the OFTs curvature and torsion were significantly altered. The blood flow velocity through the OFT of hyperglycemic embryos was significantly decreased, including flow reversal in 30% of the cardiac cycle. Thus, hyperglycemia at the onset of gestation results in asymmetric proximal endocardial cushions, abnormal OFT curvature, and altered hemodynamics in the developing heart. If present in humans, these results may identify early developmental alterations that contribute to the increased risk for cardiac malformations in babies from diabetic mothers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA