Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Spectrosc ; 57(8): 950-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14661838

RESUMO

In this work, we study the physicochemical properties of some newly developed glycoconjugated photosensitizers that can be used in photodynamic therapy (PDT) of cancers: meso-tri- and tetra-(meta-O-beta-D-glucosyloxyphenyl)porphyrins and meso-, tri-, and tetra-(meta-O-beta-D-glucosyloxyphenyl)chlorins. Their properties are compared to the non-glycosylated hydroxylated parent compounds meso-tetra-(meta-hydroxyphenyl) porphyrin and meso-tetra-(meta-hydroxyphenyl)chlorin. It was found that at the ground state, all porphyrins present, independent of the substitution, have the same mean ionization constant (pKa = 2.7), corresponding to two indistiguishable steps of protonation of tetrapyrrolic nitrogens. On the other hand, in the case of chlorins, one proton process can be observed and the corresponding nitrogen exhibits a slightly superior basicity (pKa = 3.0) with respect to porphyrins. Hydroxylated compounds present a second transition at high pH corresponding to the ionization of phenol groups (pKa = 10.5). Consequently, all photosensitizers are not charged at physiological pH (approximately 7.4), and so the ionization process does not influence their activity in biological media. Ionization induces very important variations in photosensitizer absorption and emission spectra. For example, absorption in the red region (band V), one of the most important characteristics of a good photosensitizer, is only important for diprotonated porphyrins and neutral chlorins. As far as fluorescence emission is concerned, neutral chlorins are almost six times more fluorescent than the corresponding neutral porphyrins (phi(chlorin)/phi(porphyrin) approximately = 6). It should be emphasized that the spectra modifications induced by pH variations can find interesting applications in the optimization of visible and fluorescence detection in high-performance liquid chromatography (HPLC) as well as in the development of direct, rapid fluorimetric analytical methods.


Assuntos
Glicoconjugados/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espectrometria de Fluorescência/métodos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA