Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
NPJ Aging Mech Dis ; 7(1): 26, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650085

RESUMO

Mitochondrial dysfunction and bioenergetics failure are common pathological hallmarks in Huntington's disease (HD) and aging. In the present study, we used the YAC128 murine model of HD to examine the effects of mutant huntingtin on mitochondrial parameters related to aging in brain and skeletal muscle. We have conducted a cross-sectional natural history study of mitochondrial DNA changes in the YAC128 mouse. Here, we first show that the mitochondrial volume fraction appears to increase in the axons and dendrite regions adjacent to the striatal neuron cell bodies in old mice. Mitochondrial DNA copy number (mtDNAcn) was used as a proxy measure for mitochondrial biogenesis and function. We observed that the mtDNAcn changes significantly with age and genotype in a tissue-specific manner. We found a positive correlation between aging and the mtDNAcn in striatum and skeletal muscle but not in cortex. Notably, the YAC128 mice had lower mtDNAcn in cortex and skeletal muscle. We further show that mtDNA deletions are present in striatal and skeletal muscle tissue in both young and aged YAC128 and WT mice. Tracking gene expression levels cross-sectionally in mice allowed us to identify contributions of age and genotype to transcriptional variance in mitochondria-related genes. These findings provide insights into the role of mitochondrial dynamics in HD pathogenesis in both brain and skeletal muscle, and suggest that mtDNAcn in skeletal muscle tissue may be a potential biomarker that should be investigated further in human HD.

3.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34546976

RESUMO

Ozone is a highly reactive environmental pollutant with well-recognized adverse effects on lung health. Bronchial hyperresponsiveness (BHR) is one consequence of ozone exposure, particularly for individuals with underlying lung disease. Our data demonstrated that ozone induced substantial ATP release from human airway epithelia in vitro and into the airways of mice in vivo and that ATP served as a potent inducer of mast cell degranulation and BHR, acting through P2X7 receptors on mast cells. Both mast cell-deficient and P2X7 receptor-deficient (P2X7-/-) mice demonstrated markedly attenuated BHR to ozone. Reconstitution of mast cell-deficient mice with WT mast cells and P2X7-/- mast cells restored ozone-induced BHR. Despite equal numbers of mast cells in reconstituted mouse lungs, mice reconstituted with P2X7-/- mast cells demonstrated significantly less robust BHR than mice reconstituted with WT mast cells. These results support a model where P2X7 on mast cells and other cell types contribute to ozone-induced BHR.


Assuntos
Trifosfato de Adenosina/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Mastócitos/metabolismo , Ozônio/efeitos adversos , Animais , Feminino , Humanos , Camundongos
4.
Life (Basel) ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064654

RESUMO

Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.

5.
Am J Physiol Heart Circ Physiol ; 320(3): H1055-H1065, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449849

RESUMO

Pannexin 1 (Panx1) channels export ATP and may contribute to increased concentration of the vasodilator ATP in plasma during hypoxia in vivo. We hypothesized that Panx1 channels and associated ATP export contribute to hypoxic vasodilation, a mechanism that facilitates the matching of oxygen delivery to metabolic demand of tissue. Male and female mice devoid of Panx1 (Panx1-/-) and wild-type controls (WT) were anesthetized, mechanically ventilated, and instrumented with a carotid artery catheter or femoral artery flow transducer for hemodynamic and plasma ATP monitoring during inhalation of 21% (normoxia) or 10% oxygen (hypoxia). ATP export from WT vs. Panx1-/-erythrocytes (RBC) was determined ex vivo via tonometer experimentation across progressive deoxygenation. Mean arterial pressure (MAP) was similar in Panx1-/- (n = 6) and WT (n = 6) mice in normoxia, but the decrease in MAP in hypoxia seen in WT was attenuated in Panx1-/- mice (-16 ± 9% vs. -2 ± 8%; P < 0.05). Hindlimb blood flow (HBF) was significantly lower in Panx1-/- (n = 6) vs. WT (n = 6) basally, and increased in WT but not Panx1-/- mice during hypoxia (8 ± 6% vs. -10 ± 13%; P < 0.05). Estimation of hindlimb vascular conductance using data from the MAP and HBF experiments showed an average response of 28% for WT vs. -9% for Panx1-/- mice. Mean venous plasma ATP during hypoxia was 57% lower in Panx1-/- (n = 6) vs. WT mice (n = 6; P < 0.05). Mean hypoxia-induced ATP export from RBCs from Panx1-/- mice (n = 8) was 82% lower than that from WT (n = 8; P < 0.05). Panx1 channels participate in hemodynamic responses consistent with hypoxic vasodilation by regulating hypoxia-sensitive extracellular ATP levels in blood.NEW & NOTEWORTHY Export of vasodilator ATP from red blood cells requires pannexin 1. Blood plasma ATP elevations in response to hypoxia in mice require pannexin 1. Hemodynamic responses to hypoxia are accompanied by increased plasma ATP in mice in vivo and require pannexin 1.


Assuntos
Trifosfato de Adenosina/sangue , Conexinas/sangue , Eritrócitos/metabolismo , Hemodinâmica , Membro Posterior/irrigação sanguínea , Hipóxia/sangue , Proteínas do Tecido Nervoso/sangue , Oxigênio/sangue , Animais , Pressão Arterial , Conexinas/deficiência , Conexinas/genética , Modelos Animais de Doenças , Feminino , Frequência Cardíaca , Hiperemia/sangue , Hiperemia/genética , Hiperemia/fisiopatologia , Hipotensão/sangue , Hipotensão/genética , Hipotensão/fisiopatologia , Hipóxia/genética , Hipóxia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fluxo Sanguíneo Regional , Vasodilatação
6.
Biochem Pharmacol ; 187: 114387, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33358825

RESUMO

Airway epithelial purinergic receptors control key components of the mucociliary clearance (MCC), the dominant component of pulmonary host defense. In healthy airways, the periciliary liquid (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. When the hydration of the airway surface decreases, the mucus becomes hyperconcentrated, the PCL collapses, and the "thickened" mucus layer adheres to cell surfaces, causing plaque/plug formation. Mucus accumulation is a major contributing factor to the progression of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is regulated by finely tuned mechanisms of luminal Cl- secretion and Na+ absorption with concomitant osmotically driven water flow. These activities are regulated by airway surface liquid (ASL) concentrations of adenosine and ATP, acting on airway epithelial A2B and P2Y2 receptors, respectively. The goal of this article is to provide an overview of our understanding of the role of purinergic receptors in the regulation of airway epithelial ion/fluid transport and the mechanisms of nucleotide release and metabolic activities that contribute to airway surface hydration in healthy and chronically obstructed airways.


Assuntos
Depuração Mucociliar/fisiologia , Muco/metabolismo , Receptores Purinérgicos/metabolismo , Mucosa Respiratória/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Muco/efeitos dos fármacos , Agonistas Purinérgicos/administração & dosagem , Antagonistas Purinérgicos/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos
7.
J Clin Invest ; 130(7): 3734-3749, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32287042

RESUMO

Ischemic acute kidney injury (AKI), a complication that frequently occurs in hospital settings, is often associated with hemodynamic compromise, sepsis, cardiac surgery, or exposure to nephrotoxins. Here, using a murine renal ischemia/reperfusion injury (IRI) model, we show that intercalated cells (ICs) rapidly adopted a proinflammatory phenotype after IRI. Wwe demonstrate that during the early phase of AKI either blockade of the proinflammatory P2Y14 receptor located on the apical membrane of ICs or ablation of the gene encoding the P2Y14 receptor in ICs (a) inhibited IRI-induced increase of chemokine expression in ICs, (b) reduced neutrophil and monocyte renal infiltration, (c) reduced the extent of kidney dysfunction, and (d) attenuated proximal tubule damage. These observations indicate that the P2Y14 receptor participates in the very first inflammatory steps associated with ischemic AKI. In addition, we show that the concentration of the P2Y14 receptor ligand UDP-glucose (UDP-Glc) was higher in urine samples from intensive care unit patients who developed AKI compared with patients without AKI. In particular, we observed a strong correlation between UDP-Glc concentration and the development of AKI in cardiac surgery patients. Our study identifies the UDP-Glc/P2Y14 receptor axis as a potential target for the prevention and/or attenuation of ischemic AKI.


Assuntos
Injúria Renal Aguda , Isquemia , Rim , Receptores Purinérgicos P2Y/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Quimiocinas/biossíntese , Quimiocinas/genética , Isquemia/genética , Isquemia/metabolismo , Isquemia/patologia , Isquemia/prevenção & controle , Rim/irrigação sanguínea , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Receptores Purinérgicos P2Y/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L356-L365, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800264

RESUMO

Airway surface dehydration is a pathological feature of cystic fibrosis (CF) lung disease. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated Cl- channel controlled in part by the adenosine A2B receptor. An alternative CFTR-independent mechanism of fluid secretion is regulated by ATP via the P2Y2 receptor (P2Y2R) that activates Ca2+-regulated Cl- channels (CaCC/TMEM16) and inhibits Na+ absorption. However, due to rapid ATP hydrolysis, steady-state ATP levels in CF airway surface liquid (ASL) are inadequate to maintain P2Y2R-mediated fluid secretion. Therefore, inhibiting airway epithelial ecto-ATPases to increase ASL ATP levels constitutes a strategy to restore airway surface hydration in CF. Using [γ32P]ATP as radiotracer, we assessed the effect of a series of ATPase inhibitory compounds on the stability of physiologically occurring ATP concentrations. We identified the polyoxometalate [Co4(H2O)2(PW9O34)2]10- (POM-5) as the most potent and effective ecto-ATPase inhibitor in CF airway epithelial cells. POM-5 caused long-lasting inhibition of ATP hydrolysis in airway epithelia, which was reversible upon removal of the inhibitor. Importantly, POM-5 markedly enhanced steady-state levels of released ATP, promoting increased ASL volume in CF cell surfaces. These results provide proof of concept for ecto-ATPase inhibitors as therapeutic agents to restore hydration of CF airway surfaces. As a test of this notion, cell-free sputum supernatants from CF subjects were studied and found to have abnormally elevated ATPase activity, which was markedly inhibited by POM-5.


Assuntos
Trifosfato de Adenosina/metabolismo , Fibrose Cística/metabolismo , Mucosa Respiratória/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Brônquios/patologia , Fibrose Cística/patologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Hidrólise , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Escarro/enzimologia , Compostos de Tungstênio/farmacologia
9.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L470-L486, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604630

RESUMO

Aldehydes in cigarette smoke (CS) impair mitochondrial function and reduce ciliary beat frequency (CBF), leading to diminished mucociliary clearance (MCC). However, the effects of aldehyde e-cigarette flavorings on CBF are unknown. The purpose of this study was to investigate whether cinnamaldehyde, a flavoring agent commonly used in e-cigarettes, disrupts mitochondrial function and impairs CBF on well-differentiated human bronchial epithelial (hBE) cells. To this end, hBE cells were exposed to diluted cinnamon-flavored e-liquids and vaped aerosol and assessed for changes in CBF. hBE cells were subsequently exposed to various concentrations of cinnamaldehyde to establish a dose-response relationship for effects on CBF. Changes in mitochondrial oxidative phosphorylation and glycolysis were evaluated by Seahorse Extracellular Flux Analyzer, and adenine nucleotide levels were quantified by HPLC. Both cinnamaldehyde-containing e-liquid and vaped aerosol rapidly yet transiently suppressed CBF, and exposure to cinnamaldehyde alone recapitulated this effect. Cinnamaldehyde impaired mitochondrial respiration and glycolysis in a dose-dependent manner, and intracellular ATP levels were significantly but temporarily reduced following exposure. Addition of nicotine had no effect on the cinnamaldehyde-induced suppression of CBF or mitochondrial function. These data indicate that cinnamaldehyde rapidly disrupts mitochondrial function, inhibits bioenergetic processes, and reduces ATP levels, which correlates with impaired CBF. Because normal ciliary motility and MCC are essential respiratory defenses, inhalation of cinnamaldehyde may increase the risk of respiratory infections in e-cigarette users.


Assuntos
Acroleína/análogos & derivados , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Nicotina/farmacologia , Acroleína/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Fumar/efeitos adversos
10.
COPD ; 15(6): 572-580, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30712400

RESUMO

Mucus hydration is important in mucus clearance and lung health. This study sought to test the relative utility of spontaneous sputum (SS) versus the reasonably noninvasive induced sputum (IS) samples for measurement of mucus hydration. SS and IS samples were collected over a 2-day study interval. Sputum was induced with escalating inhaled nebulized 3-5% hypertonic saline. Viscous portions of the samples ("plugs") were utilized for percent solids and total mucin analyses. Cytokines, nucleotides/nucleosides and cell differentials were measured in plugs diluted into 0.1% Sputolysin. Overall, 61.5% of chronic bronchitis (CB) subjects produced a SS sample and 95.2% an IS sample. Total expectorate sample weights were less for the SS (0.94 ± 0.98 g) than the IS (2.67 ± 2.33 g) samples. Percent solids for the SS samples (3.56% ± 1.95; n = 162) were significantly greater than the IS samples (3.08% ± 1.81; n = 121), p = 0.133. Total mucin concentrations also exhibited a dilution of the IS samples: SS = 4.15 ± 3.23 mg/ml (n = 62) versus IS= 3.34 ± 2.55 mg/ml (n = 71) (p = 0.371). Total mucins (combined SS and IS) but not percent solids, were inversely associated with FEV1 percent predicted (p = 0.052) and FEV1,/FVC % (p = 0.035). There were no significant differences between sample types in cytokine or differential cell counts. The probability of sample collections was less for SS than IS samples. Measurements of hydration revealed modest dilution of the IS samples compared to SS. Thus for measurements of mucus hydration, both SS and IS samples appear to be largely interchangeable.


Assuntos
Bronquite Crônica/metabolismo , Mucinas/metabolismo , Muco/metabolismo , Escarro/metabolismo , Idoso , Bronquite Crônica/fisiopatologia , Contagem de Células , Citocinas/metabolismo , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Solução Salina Hipertônica , Escarro/citologia , Capacidade Vital , Água/metabolismo
11.
Front Immunol ; 8: 1028, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878780

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5'-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.

12.
Purinergic Signal ; 12(4): 627-635, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27421735

RESUMO

In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y14 receptors (P2Y14R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose levels are abnormally elevated in lung secretions from patients with cystic fibrosis (CF) as well as in a mouse model of CF-like disease, the ßENaC transgenic (Tg) mouse. Instillation of UDP-glucose into wild-type mouse tracheas resulted in enhanced neutrophil lung recruitment, and this effect was nearly abolished when UDP-glucose was co-instilled with the P2Y14R antagonist PPTN [4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl-2-naphthoic acid]. Importantly, administration of PPTN to ßENaC-Tg mice reduced neutrophil lung inflammation. These results suggest that UDP-glucose released into the airways acts as a local mediator of neutrophil inflammation.


Assuntos
Fibrose Cística/metabolismo , Pulmão/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Uridina Difosfato Glucose/farmacologia , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Fibrose Cística/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Escarro/imunologia , Escarro/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/imunologia , Uridina Difosfato Glucose/metabolismo , Adulto Jovem
13.
Nat Med ; 22(1): 37-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26642438

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-δ) interacts with HTT and that mutant HTT represses PPAR-δ-mediated transactivation. Increased PPAR-δ transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR-δ in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR-δ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR-δ using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPAR-δ activation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPAR-δ activation may be beneficial in HD and related disorders.


Assuntos
Doença de Huntington/genética , Neostriado/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Animais , Morte Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Movimento/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , PPAR delta/genética , PPAR delta/metabolismo , Piperazinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/agonistas , Sulfonamidas/farmacologia
14.
Am J Respir Crit Care Med ; 192(2): 182-90, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25909230

RESUMO

RATIONALE: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. OBJECTIVES: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. METHODS: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. MEASUREMENTS AND RESULTS: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. CONCLUSIONS: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis.


Assuntos
Bronquite Crônica/fisiopatologia , Depuração Mucociliar/fisiologia , Muco/química , Muco/fisiologia , Pressão Osmótica/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Mol Pharmacol ; 88(1): 151-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25829059

RESUMO

UDP-sugars, which are indispensable for protein glycosylation reactions in cellular secretory pathways, also act as important extracellular signaling molecules. We discuss here the broadly expressed P2Y14 receptor, a G-protein-coupled receptor targeted by UDP sugars, and the increasingly diverse set of physiologic responses discovered recently functioning downstream of this receptor in many epithelia as well as in immune, inflammatory, and other cells.


Assuntos
Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais , Açúcares de Uridina Difosfato/metabolismo , Animais , Diferenciação Celular , Humanos , Imunidade Inata , Inflamação/metabolismo
17.
Am J Respir Cell Mol Biol ; 49(5): 814-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23763446

RESUMO

ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)-associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling-promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca(2+) chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca(2+)-dependent vesicular mechanisms not associated with mucin granule secretion.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Pneumonia/metabolismo , Mucosa Respiratória/metabolismo , Vesículas Secretórias/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Tamanho Celular , Células Cultivadas , Quelantes/farmacologia , Conexinas/metabolismo , Fibrose Cística/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Mucinas/metabolismo , Depuração Mucociliar , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Pressão Osmótica , Pneumonia/imunologia , Cultura Primária de Células , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/imunologia , Fatores de Tempo
18.
Biochim Biophys Acta ; 1830(10): 4692-707, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742824

RESUMO

BACKGROUND: The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics). METHODS: Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin-luciferase based real-time luminometry. RESULTS: Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%. Erythrocytes pre-exposure to 10µM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux. Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers. CONCLUSIONS: MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers. GENERAL SIGNIFICANCE: Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation.


Assuntos
Trifosfato de Adenosina/metabolismo , Eritrócitos/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Cães , Eritrócitos/metabolismo , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Camundongos , Camundongos Knockout , Transdução de Sinais
19.
Mol Pharmacol ; 84(1): 41-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592514

RESUMO

The nucleotide-sugar-activated P2Y14 receptor (P2Y14-R) is highly expressed in hematopoietic cells. Although the physiologic functions of this receptor remain undefined, it has been strongly implicated recently in immune and inflammatory responses. Lack of availability of receptor-selective high-affinity antagonists has impeded progress in studies of this and most of the eight nucleotide-activated P2Y receptors. A series of molecules recently were identified by Gauthier et al. (Gauthier et al., 2011) that exhibited antagonist activity at the P2Y14-R. We synthesized one of these molecules, a 4,7-disubstituted 2-naphthoic acid derivative (PPTN), and studied its pharmacological properties in detail. The concentration-effect curve of UDP-glucose for promoting inhibition of adenylyl cyclase in C6 glioma cells stably expressing the P2Y14-R was shifted to the right in a concentration-dependent manner by PPTN. Schild analyses revealed that PPTN-mediated inhibition followed competitive kinetics, with a KB of 434 pM observed. In contrast, 1 µM PPTN exhibited no agonist or antagonist effect at the P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, or P2Y13 receptors. UDP-glucose-promoted chemotaxis of differentiated HL-60 human promyelocytic leukemia cells was blocked by PPTN with a concentration dependence consistent with the KB determined with recombinant P2Y14-R. In contrast, the chemotactic response evoked by the chemoattractant peptide fMetLeuPhe was unaffected by PPTN. UDP-glucose-promoted chemotaxis of freshly isolated human neutrophils also was blocked by PPTN. In summary, this work establishes PPTN as a highly selective high-affinity antagonist of the P2Y14-R that is useful for interrogating the action of this receptor in physiologic systems.


Assuntos
Quimiotaxia/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Glucose/metabolismo , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Glioma/metabolismo , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Neutrófilos/metabolismo , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/síntese química , Ratos
20.
Am J Physiol Cell Physiol ; 304(10): C976-84, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23467297

RESUMO

Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.


Assuntos
Células Caliciformes/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos/metabolismo , Sistema Respiratório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Difosfato de Adenosina/biossíntese , Monofosfato de Adenosina/biossíntese , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Humanos , Mucinas/genética , Proteínas de Transporte de Nucleotídeos/biossíntese , RNA Interferente Pequeno , Vesículas Secretórias/metabolismo , Uridina Trifosfato/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA