Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373105

RESUMO

Mephedrone is a psychoactive drug that increases dopamine, serotonin and noradrenaline levels in the central nervous system via interaction with transporters or monoamines. The aim of the presented study was to assess the role of the GABA-ergic system in the expression of mephedrone-induced reward. For this purpose, we conducted (a) a behavioral evaluation of the impact of baclofen (a GABAB receptors agonist) and GS39783 (a positive allosteric modulator of GABAB receptors) on the expression of mephedrone-induced conditioned place preference (CPP) in rats, (b) an ex vivo chromatographic determination of the GABA level in the hippocampi of rats subchronically treated with mephedrone and (c) an in vivo evaluation of GABA hippocampal concentration in rats subchronically administered with mephedrone using magnetic resonance spectroscopy (MRS). The results show that GS39783 (but not baclofen) blocked the expression of CPP induced by (20 mg/kg of) mephedrone. The behavioral effect was consistent with chromatographic analysis, which showed that mephedrone (5 and 20 mg/kg) led to a decrease in GABA hippocampal concentration. Altogether, the presented study provides a new insight into the involvement of the GABA-ergic system in the rewarding effects of mephedrone, implying that those effects are at least partially mediated through GABAB receptors, which suggests their potential role as new targets for the pharmacological management of mephedrone use disorder.


Assuntos
Agonistas dos Receptores de GABA-B , Recompensa , Ratos , Animais , Agonistas dos Receptores de GABA-B/farmacologia , Baclofeno/farmacologia , Receptores de GABA-B/metabolismo
2.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563564

RESUMO

The intestinal microbiome composition and dietary supplementation with psychobiotics can result in neurochemical alterations in the brain, which are possible due to the presence of the brain-gut-microbiome axis. In the present study, magnetic resonance spectroscopy (MRS) and behavioural testing were used to evaluate whether treatment with Lacticaseibacillus rhamnosus JB-1 (JB­1) bacteria alters brain metabolites' levels and behaviour during continuous exposure to chronic stress. Twenty Wistar rats were subjected to eight weeks of a chronic unpredictable mild stress protocol. Simultaneously, half of them were fed with JB-1 bacteria, and the second half was given a daily placebo. Animals were examined at three-time points: before starting the stress protocol and after five and eight weeks of stress onset. In the elevated plus maze behavioural test the placebo group displayed increased anxiety expressed by almost complete avoidance of exploration, while the JB-1 dietary supplementation mitigated anxiety which resulted in a longer exploration time. Hippocampal MRS measurements demonstrated a significant decrease in glutamine + glutathione concentration in the placebo group compared to the JB-1 bacteria-supplemented group after five weeks of stress. With the progression of stress the decrease of glutamate, glutathione, taurine, and macromolecular concentrations were observed in the placebo group as compared to baseline. The level of brain metabolites in the JB-1-supplemented rats were stable throughout the experiment, with only the taurine level decreasing between weeks five and eight of stress. These data indicated that the JB-1 bacteria diet might stabilize levels of stress-related neurometabolites in rat brain and could prevent the development of anxiety/depressive-like behaviour.


Assuntos
Lacticaseibacillus rhamnosus , Animais , Comportamento Animal , Ingestão de Alimentos , Glutationa/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico , Taurina/metabolismo
3.
Sci Rep ; 11(1): 19040, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561488

RESUMO

Chemical exchange saturation transfer (CEST) MRI was performed for the evaluation of cerebral metabolic changes in a rat model of depressive-like disease induced by chronic unpredictable mild stress (CUMS). CEST Z-spectra were acquired on a 7 T MRI with two saturation B1 amplitudes (0.5 and 0.75 µT) to measure the magnetization transfer ratio (MTR), CEST and relayed nuclear Overhauser effect (rNOE). Cerebral cortex and hippocampus were examined in two groups of animals: healthy control (n = 10) and stressed (n = 14), the latter of which was exposed to eight weeks of the CUMS protocol. The stressed group Z-spectrum parameters, primarily MTRs, were significantly lower than in controls, at all selected frequency offsets (3.5, 3.0, 2.0, - 3.2, - 3.6 ppm) in the cortex (the largest difference of ~ 3.5% at - 3.6 ppm, p = 0.0005) and the hippocampus (MTRs measured with a B1 = 0.5 µT). The hippocampal rNOE contributions decreased significantly in the stressed brains. Glutamate concentration (assessed using ELISA) and MTR at 3 ppm correlated positively in both brain regions. GABA concentration also correlated positively with CEST contributions in both cerebral areas, while such correlation with MTR was positive in hippocampus, and nonsignificant in cortex. Results indicate that CEST is sensitive to neurometabolic changes following chronic stress exposure.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Depressão/diagnóstico por imagem , Depressão/patologia , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estresse Psicológico/complicações , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Doença Crônica , Depressão/etiologia , Depressão/metabolismo , Modelos Animais de Doenças , Glutamatos/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ratos , Ácido gama-Aminobutírico/metabolismo
4.
Mol Neurobiol ; 58(9): 4413-4424, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021482

RESUMO

Mephedrone is a widely used drug of abuse, exerting its effects by interacting with monoamine transporters. Although this mechanism has been widely studied heretofore, little is known about the involvement of glutamatergic transmission in mephedrone effects. In this study, we comprehensively evaluated glutamatergic involvement in rewarding effects of mephedrone using an interdisciplinary approach including (1) behavioural study on effects of memantine (non-selective NMDA antagonist) on expression of mephedrone-induced conditioned place preference (CPP) in rats; (2) evaluation of glutamate concentrations in the hippocampus of rats following 6 days of mephedrone administration, using in vivo magnetic resonance spectroscopy (MRS); and (3) determination of glutamate levels in the hippocampus of rats treated with mephedrone and subjected to MRS, using ion-exchange chromatography. In the presented research, we confirmed priorly reported mephedrone-induced rewarding effects in the CPP paradigm and showed that memantine (5 mg/kg) was able to reverse the expression of this effect. MRS study showed that subchronic mephedrone administration increased glutamate level in the hippocampus when measured in vivo 24 h (5 mg/kg, 10 mg/kg and 20 mg/kg) and 2 weeks (5 mg/kg and 20 mg/kg) after last injection. Ex vivo chromatographic analysis did not show significant changes in hippocampal glutamate concentrations; however, it showed similar results as obtained in the MRS study proving its validity. Taken together, the presented study provides new insight into glutamatergic involvement in rewarding properties of mephedrone.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Metanfetamina/análogos & derivados , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Recompensa , Animais , Hipocampo/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Metanfetamina/farmacologia , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar
5.
Nutr Res ; 82: 44-57, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32961399

RESUMO

Major depressive disorder is a stress-related disease associated with brain metabolic dysregulation in the glutamine-glutamate/γ-aminobutyric acid (Gln-Glu/GABA) cycle. Recent studies have demonstrated that microbiome-gut-brain interactions have the potential to influence mental health. The hypothesis of this study was that Lactobacillus rhamnosus JB-1 (LR-JB1™) dietary supplementation has a positive impact on neuro-metabolism which can be quantified in vivo using magnetic resonance spectroscopy (MRS). A rat model of depressive-like disorder, chronic unpredictable mild stress (CUMS), was used. Baseline comparisons of MRS and behavior were obtained in a control group and in a stressed group subjected to CUMS. Of the 22 metabolites measured using MRS, stressed rats had significantly lower concentrations of GABA, glutamate, glutamine + glutathione, glutamate + glutamine, total creatine, and total N-acetylaspartate (tNAA). Stressed rats were then separated into 2 groups and supplemented with either LR-JB1™ or placebo and re-evaluated after 4 weeks of continued CUMS. The LR-JB1™ microbiotic diet restored these metabolites to levels previously observed in controls, while the placebo diet resulted in further significant decrease of glutamate, total choline, and tNAA. LR-JB1™ treated animals also exhibited calmer and more relaxed behavior, as compared with placebo treated animals. In summary, significant cerebral biochemical downregulation of major brain metabolites following prolonged stress were measured in vivo using MRS, and these decreases were reversed using a microbiotic dietary supplement of LR-JB1™, even in the presence of continued stress, which also resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo/dietoterapia , Suplementos Nutricionais , Lacticaseibacillus rhamnosus , Estresse Psicológico/dietoterapia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Comportamento Animal , Colina/metabolismo , Transtorno Depressivo/metabolismo , Progressão da Doença , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Pol J Radiol ; 84: e190-e197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481990

RESUMO

PURPOSE: The aim of the work was to share the practical experience of preclinical and clinical proton magnetic resonance spectroscopy (1HMRS) studies conducted using a 7-Tesla magnetic field strength scanner, taking into account the specificity of both settings in the context of translational research. MATERIAL AND METHODS: 1HMRS volunteer studies conducted using a Discovery 950 GE 7T scanner, were carried out with PRESS sequence, and a VOI measuring 2.0 × 2.0 × 2.0 cm3 placed in the white matter at the parietal occipital lobe. Rodent spectra obtained using a 7T Bruker were measured with PRESS, with a VOI 2.0 × 2.0 × 5.5 mm3 placed over the hippocampus. RESULTS: 1HMRS data from humans and rats show that the brain spectra obtained in the same field are characterised by a similar neurochemical structure and spectral resolution. Spectra obtained from rats demonstrate the following metabolites: NAA, Glu, Gln, Ins, Cho, Cr, PCr, Tau, GABA, Lac, NAAG, and Asp. In turn, spectra from humans allowed estimation of the following metabolites: Ala, NAA, Glu, Gln, Ins, Cho, Cr, PCr, Tau, GABA, Lac, NAAG, and Asp. Signals from Gln, Glu with chemical shift around 2.4 ppm, from Cr, PCr, and GABA at 3 ppm, and signals from Cho and Tau at approximately 3.2 ppm, can be properly separated and estimated both in humans and in rats. CONCLUSIONS: These results are promising in terms of broadening the knowledge of many neurological diseases by inducing them on animal models and then transferring this knowledge to clinical practice. In spite of this, important distinctions in the technical aspects and methodological differences of high-field 1HMRS in both preclinical and clinical conditions should be taken into account.

7.
Pol J Radiol ; 84: e147-e152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019609

RESUMO

The work describes the physical basis of the chemical exchange saturation transfer (CEST) technique; it presents the beginnings of the implementation of the method and its possible applications. The principles of correct data acquisition and possible solutions used during the design of the CEST sequence are shown. The main problems related to data analysis are indicated, and an example Z-spectrum from in vivo study of the rat brain is introduced. Furthermore, the parameters related to spectrum analyses such as magnetisation transfer asymmetry (MTRasym) and amide proton transfer asymmetry (APTasym) are presented. In the following part, different types of the CEST method often mentioned in the literature are discussed. Subsequently, the possible applications of the CEST method in both clinical and experimental practice are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA