Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627155

RESUMO

Many traditional cancer treatments such as radiation and chemotherapy are known to induce cellular DNA damage as part of their cytotoxic activity. The cGAS-STING signaling axis, a key member of the DNA damage response that acts as a sensor of foreign or aberrant cytosolic DNA, is helping to rationalize the DNA-damaging activity of these treatments and their emerging immunostimulatory capacity. Moreover, cGAS-STING, which is attracting considerable attention for its ability to promote antitumor immune responses, may fundamentally be able to address many of the barriers limiting the success of cancer immunotherapy strategies, including the immunosuppressive tumor microenvironment. Herein, we review the traditional cancer therapies that have been linked with cGAS-STING activation, highlighting their targets with respect to their role and function in the DNA damage response. As part of the review, an emerging "chemoimmunotherapy" concept whereby DNA-damaging agents are used for the indirect activation of STING is discussed as an alternative to the direct molecular agonism strategies that are in development, but have yet to achieve clinical approval. The potential of this approach to address some of the inherent and emerging limitations of cGAS-STING signaling in cancer immunotherapy is also discussed. Ultimately, it is becoming clear that in order to successfully employ the immunotherapeutic potential of the cGAS-STING axis, a balance between its contrasting antitumor and protumor/inflammatory activities will need to be achieved.

2.
J Pharm Pharmacol ; 75(8): 1058-1065, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307431

RESUMO

OBJECTIVES: We investigate the anticancer activity and human stimulator of interferon genes pathway activation by a new hydrated-prenylated tetraoxygenated xanthone, garcicowanone I (1) and two known xanthones (2 and 3) that were isolated from the root bark of Garcinia cowa Roxb. ex Choisy. METHODS: The anticancer activity of each compound was evaluated by sulforhodamine B assay in immortalized cancer cell lines. Stimulator of interferon genes pathway activation was assessed by western blot analysis using human THP-1-derived macrophages. The production of pro-inflammatory cytokines from these macrophages was also evaluated via enzyme-linked immunosorbent assay. KEY FINDINGS: Both compounds 1 and 3 displayed moderate inhibitory effects on the cancer cells, including a cisplatin-resistant cell line, with IC50 values in the range of 10-20 µM. All three xanthones activated the stimulator of interferon genes, as evidenced by phosphorylation of tank-binding kinase 1, the stimulator of interferon genes protein and interferon regulatory factor 3. Furthermore, treatment of these macrophages with compounds 1-3 led to the production of pro-inflammatory cytokines, including interleukin 6, tumour necrosis factor α and interleukin 1ß. CONCLUSIONS: In conclusion, the isolated xanthones, including the novel garcicowanone I, displayed promising anticancer and immunomodulatory activity that warrants further research.


Assuntos
Garcinia , Xantonas , Humanos , Garcinia/química , Xantonas/farmacologia , Xantonas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular , Interferons , Estrutura Molecular
3.
Pharmaceutics ; 14(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36559204

RESUMO

Perhaps the greatest limitation for the continually advancing developments in cancer immunotherapy remains the immunosuppressive tumor microenvironment (TME). The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis is an emerging immunotherapy target, with the resulting type I interferons and transcription factors acting at several levels in both tumor and immune cells for the generation of adaptive T cell responses. The cGAS-STING axis activation by therapeutic agents that induce DNA damage, such as certain chemotherapies, continues to be reported, highlighting the importance of the interplay of this signaling pathway and the DNA damage response in cancer immunity/immunotherapy. We have developed a multi-targeted mannosylated cationic liposomal immunomodulatory system (DS) which contains low doses of the chemotherapeutic cytarabine (Ara-C). In this work, we show that entrapment of non-cytotoxic doses of Ara-C within the DS improves its ability to induce DNA double strand breaks in human ovarian and colorectal cancer cell lines, as well as in various immune cells. Importantly, for the first time we demonstrate that the DNA damage induced by Ara-C/DS translates into cGAS-STING axis activation. We further demonstrate that Ara-C/DS-mediated DNA damage leads to upregulation of surface expression of immune ligands on cancer cells, coinciding with priming of cytotoxic lymphocytes as assessed using an ex vivo model of peripheral blood mononuclear cells from colorectal cancer patients, as well as an in vitro NK cell model. Overall, the results highlight a broad immunotherapeutic potential for Ara-C/DS by enhancing tumor-directed inflammatory responses.

4.
Pharmaceutics ; 14(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365120

RESUMO

Glycosylated NPs, including liposomes, are known to target various receptors involved in cellular carbohydrate transport, of which the mannoside binding receptors are attracting particular attention for their expression on various immune cells, cancers, and cells involved in maintaining central nervous system (CNS) integrity. As part of our interest in NP drug delivery, mannosylated glycoliposomal delivery systems formed from the self-assembly of amphiphilic neoglycolipids were developed, with a C12-alkyl mannopyranoside (ML-C12) being identified as a lead compoundcapable of entrapping, protecting, and improving the delivery of structurally diverse payloads. However, ML-C12 was not without limitations in both the synthesis of the glycolipids, and the physicochemical properties of the resulting glycoliposomes. Herein, the chemical syntheses of a novel series of mannosylated neoglycolipids are reported with the goal of further improving on the previous ML-C12 glyconanoparticles. The current work aimed to use a self-contingent strategy which overcomes previous synthetic limitations to produce neoglycolipids that have one exposed mannose residue, an aromatic scaffold, and two lipid tails with varied alkyl chains. The azido-ending carbohydrates and the carboxylic acid-ending lipid tails were ligated using a new one-pot modified Staudinger chemistry that differed advantageously to previous syntheses. The formation of stable neoglycoliposomes of controllable and ideal sizes (≈100-400 nm) was confirmed via dynamic light scattering (DLS) experiments and transmission electron microscopy (TEM). Beyond chemical advantages, the present study further aimed to establish potential improvements in the biological activity of the neoglycoliposomes. Concanavalin A (Con A) agglutination studies demonstrated efficient and stable cross-linking abilities dependent on the length of the linkers and lipid tails. The efficacy of the glycoliposomes in improving cytosolic uptake was investigated using Nile Red as probe in immune and cancer cell lines. Preliminary ex vivo safety assessments showed that the mannosylated glycoliposomes are hemocompatible, and non-immunogenic. Finally, using a model peptide therapeutic, the relative entrapment capacity and plasma stability of the optimal glycoliposome delivery system was evaluated and compared to the previous neoglycoliposomes. Overall, the new lead glycoliposome showed improved biological activity over ML-C12, in addition to having several chemical benefits including the lack of stereocenters, a longer linker allowing better sugar availability, and ease of synthesis using novel one-pot modified Staudinger chemistry.

5.
Evol Comput ; 29(3): 415-439, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467994

RESUMO

The two-machine permutation flow shop scheduling problem with buffer is studied for the special case that all processing times on one of the two machines are equal to a constant c. This case is interesting because it occurs in various applications, for example, when one machine is a packing machine or when materials have to be transported. Different types of buffers and buffer usage are considered. It is shown that all considered buffer flow shop problems remain NP-hard for the makespan criterion even with the restriction to equal processing times on one machine. However, the special case where the constant c is larger or smaller than all processing times on the other machine is shown to be polynomially solvable by presenting an algorithm (2BF-OPT) that calculates optimal schedules in O(nlogn) steps. Two heuristics for solving the NP-hard flow shop problems are proposed: (i) a modification of the commonly used NEH heuristic (mNEH) and (ii) an Iterated Local Search heuristic (2BF-ILS) that uses the mNEH heuristic for computing its initial solution. It is shown experimentally that the proposed 2BF-ILS heuristic obtains better results than two state-of-the-art algorithms for buffered flow shop problems from the literature and an Ant Colony Optimization algorithm. In addition, it is shown experimentally that 2BF-ILS obtains the same solution quality as the standard NEH heuristic, however, with a smaller number of function evaluations.


Assuntos
Algoritmos , Heurística
6.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360762

RESUMO

Peptide therapeutics offer numerous advantages in the treatment of diseases and disorders of the central nervous system (CNS). However, they are not without limitations, especially in terms of their pharmacokinetics where their metabolic lability and low blood-brain barrier penetration hinder their application. Targeted nanoparticle delivery systems are being tapped for their ability to improve the delivery of therapeutics into the brain non-invasively. We have developed a family of mannosylated glycoliposome delivery systems for targeted drug delivery applications. Herein, we demonstrate via in vivo distribution studies the potential of these glycoliposomes to improve the utility of CNS active therapeutics using dynantin, a potent and selective dynorphin peptide analogue antagonist of the kappa opioid receptor (KOR). Glycoliposomal entrapment protected dynantin against known rapid metabolic degradation and ultimately improved brain levels of the peptide by approximately 3-3.5-fold. Moreover, we linked this improved brain delivery with improved KOR antagonist activity by way of an approximately 30-40% positive modulation of striatal dopamine levels 20 min after intranasal administration. Overall, the results clearly highlight the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the CNS.


Assuntos
Dinorfinas , Peptídeos , Receptores Opioides kappa/antagonistas & inibidores , Corpo Estriado/metabolismo , Dopamina , Dinorfinas/química , Dinorfinas/farmacocinética , Dinorfinas/farmacologia , Humanos , Lipossomos , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia
7.
Int J Pharm ; 606: 120849, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216770

RESUMO

Cancer treatment remains unsatisfactory with high rates of recurrence and metastasis. Immunomodulatory agents capable of promoting cellular antitumor immunity while inhibiting the local immunosuppressive tumor microenvironment could greatly improve cancer treatment. We have developed a multi-targeted mannosylated cationic liposome delivery system containing muramyl dipeptide (DS) and low doses of the chemotherapeutic agent cytarabine (Ara-C). Immunomodulation of primary immune cells and immortalized cancer cell lines by Ara-C/DS was assessed by measuring cytokine levels and surface marker expression. As a proof of concept, the generation of targeted cellular immunity was investigated in the context of responses to viral antigens. This report is the first demonstrating that Ara-C combined with DS can modulate immune responses and revert immunosuppression as evidenced by increased IFN-γ and IL-12p40 without changes in IL-10 in peripheral blood mononuclear cells, and increased CD80 and decreased CD163 on immunosuppressive macrophages. Furthermore, Ara-C/DS increased MHC class I expression on cancer cells while increasing the production of antigen-specific IFN-γ+ CD8+ T cells in viral peptide-challenged lymphocytes from both humans and vaccinated mice. Taken together, these results are the first to document immunomodulatory properties of Ara-C linked with recognition of antigens and potentially the generation of antitumor immune memory.


Assuntos
Citarabina , Lipossomos , Animais , Linfócitos T CD8-Positivos , Imunidade Celular , Imunomodulação , Leucócitos Mononucleares , Camundongos
8.
Vaccines (Basel) ; 9(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546163

RESUMO

Tobacco smoking continues to be a global epidemic and the leading preventable cause of cancer and cardiovascular disease. Nicotine vaccines have been investigated as an alternative to currently available smoking cessation strategies as a means to increase rates of success and long-term abstinence. Recently, we demonstrated that a mucosal nicotine vaccine was able to induce robust mucosal and systemic antibodies when delivered heterologously using intranasal and intramuscular routes. Herein, we investigated the neutralization ability of the anti-nicotine antibodies using both intranasal and intracardiac nicotine challenges. Combining the extraction of lyophilized organ samples with RP-HPLC methods, we were able to recover between 47% and 56% of the nicotine administered from the blood, brain, heart, and lungs up to 10 min after challenge, suggesting that the interaction of the antibodies with nicotine forms a stable complex independently of the route of vaccination or challenge. Although both challenge routes can be used for assessing systemic antibodies, only the intranasal administration of nicotine, which is more physiologically similar to the inhalation of nicotine, permitted the crucial interaction of nicotine with the mucosal antibodies generated using the heterologous vaccination route. Notably, these results were obtained 6 months after the final vaccination, demonstrating stable mucosal and systemic antibody responses.

9.
Eur J Pharm Biopharm ; 154: 290-296, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717389

RESUMO

Dynantin is a potent and selective synthetic polypeptide kappa opioid receptor antagonist which has potential antidepressant and anxiolytic-like therapeutic applications, however its clinical development has been hampered by plasma stability issues and poor penetration of the blood brain barrier. Targeted liposome delivery systems represent a promising and non-invasive approach to improving the delivery of therapeutic agents across the blood brain barrier. As part of our work focused on targeted drug delivery, we have developed a novel mannosylated liposome system. Herein, we investigate these glycoliposomes for the targeted delivery of dynantin to the central nervous system. Cholesterol was tested and optimized as a formulation excipient, where it improved particle stability as measured via particle size, entrapment and ex vivo plasma stability of dynantin. The in vitro PRESTO-TANGO assay system was used to confirm that glycoliposomal entrapment did not impact the affinity or activity of the peptide at its receptor. Finally, in vivo distribution studies in mice showed that the mannosylated glycoliposomes significantly improved delivery of dynantin to the brain. Overall, the results clearly demonstrate the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the central nervous system.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Manose/metabolismo , Antagonistas de Entorpecentes/metabolismo , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/metabolismo , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Lipossomos , Manose/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Antagonistas de Entorpecentes/administração & dosagem
10.
Molecules ; 25(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178357

RESUMO

The addictive nature of nicotine is likely the most significant reason for the continued prevalence of tobacco smoking despite the widespread reports of its negative health effects. Nicotine vaccines are an alternative to the currently available smoking cessation treatments, which have limited efficacy. However, the nicotine hapten is non-immunogenic, and successful vaccine formulations to treat nicotine addiction require both effective adjuvants and delivery systems. The immunomodulatory properties of short, non-natural peptide sequences not found in human systems and their ability to improve vaccine efficacy continue to be reported. The aim of this study was to determine if small "non-natural peptides," as part of a conjugate nicotine vaccine, could improve immune responses. Four peptides were synthesized via solid phase methodology, purified, and characterized. Ex vivo plasma stability studies using RP-HPLC confirmed that the peptides were not subject to proteolytic degradation. The peptides were formulated into conjugate nicotine vaccine candidates along with a bacterial derived adjuvant vaccine delivery system and chitosan as a stabilizing compound. Formulations were tested in vitro in a dendritic cell line to determine the combination that would elicit the greatest 1L-1ß response using ELISAs. Three of the peptides were able to enhance the cytokine response above that induced by the adjuvant delivery system alone. In vivo vaccination studies in BALB/c mice demonstrated that the best immune response, as measured by nicotine-specific antibody levels, was elicited from the conjugate vaccine structure, which included the peptide, as well as the other components. Isotype analyses highlighted that the peptide was able to shift immune response toward being more humorally dominant. Overall, the results have implications for the use of non-natural peptides as adjuvants not only for the development of a nicotine vaccine but also for use with other addictive substances and conventional vaccination targets as well.


Assuntos
Nicotina/imunologia , Transtornos Relacionados ao Uso de Substâncias/imunologia , Tabagismo/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos , Haptenos/efeitos dos fármacos , Haptenos/imunologia , Humanos , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Interleucina-1beta/genética , Camundongos , Nicotina/metabolismo , Peptídeos/imunologia , Peptídeos/farmacologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/patologia , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Tabagismo/genética , Tabagismo/prevenção & controle , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/farmacologia , Vacinas de Subunidades Antigênicas/imunologia
11.
Pharmaceutics ; 11(12)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771151

RESUMO

Tobacco smoking is the cause of 20% of Canadian deaths per year. Nicotine vaccines present a promising alternative to traditional smoking cessation products, but to date, no vaccine has been able to move through all phases of clinical trials. We have previously demonstrated that the AFPL1-conjugate nicotine vaccine does not induce systemic or immunotoxicity in a mouse model and that a heterologous vaccination approach is more advantageous than the homologous routes to inducing mucosal and systemic anti-nicotine antibodies. The purpose of this study was to confirm the safety profile of the vaccine in a repeat-dose toxicity study. The heterologous vaccination strategy was again used, and Sprague Dawley rats were administered a dose five times greater than in our previous studies. Physiological conditions, food and water consumption, body temperature, injection site inflammation, relative weights of organs, histopathology, and blood chemistry and hematology were evaluated during the course of the vaccination period to determine the safety of the vaccine. The AFPL1-conjugate nicotine vaccine did not induce clinically relevant changes or induce symptoms that would be associated with toxicity, making it a promising candidate for future investigations.

12.
PLoS One ; 14(8): e0221708, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31442285

RESUMO

Despite the increased risks of cancers and cardiovascular related diseases, tobacco smoking continues to be prevalent in the population due largely in part to the addictive nature of nicotine. Nicotine vaccines are an attractive alternative to the current smoking cessation options but have yet to be successful enough in clinical trials to reach the market due to a lack of neutralizing antibodies and inconsistent results. Using AFPL1 derived from the Cuban meningococcal vaccine as an adjuvant, we have previously published promising results with an intranasally administered nicotine vaccine. In order to examine the immunogenicity and safety of this vaccine in mice we set up a pilot trial administering the vaccine either intranasally, intramuscularly or utilizing both routes simultaneously and evaluated immune responses and clinical symptoms throughout the duration of the vaccination protocol and post-mortem. These data further demonstrate the ability of the AFPL1 nicotine conjugate vaccine to be a safe and potential candidate for clinical use.


Assuntos
Adjuvantes Imunológicos/farmacologia , Nicotina/imunologia , Proteolipídeos/imunologia , Vacinação , Vacinas Conjugadas/imunologia , Animais , Anticorpos/imunologia , Feminino , Camundongos Endogâmicos BALB C , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Músculos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Baço/efeitos dos fármacos
13.
Vet Sci ; 6(3)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443162

RESUMO

Situs inversus totalis is a condition where there is a transposition of all internal organs from their normal anatomical location. This infrequent and rare congenital condition has been described in several species of mammals. Dextorcardia is a series of conditions associated with an abnormal congenital positioning of the heart, and is often associated with situs inversus totalis. Here we report a case of situs inversus totalis and two cases of dextrocardia identified in Sprague Dawley rats during gross necropsy evaluations at both the Health Sciences North Research Institute (HSNRI) in Canada and Finlay Institute of Vaccine Research and Production in Cuba. The intent of this report is to share our findings and aid in the accumulation of data on these rare conditions.

14.
PLoS One ; 13(9): e0204472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30260999

RESUMO

The therapeutic application of peptide-based drugs is significantly limited by the rapid proteolytic degradation that occurs when in blood. Encapsulation of these peptide structures within a delivery system, such as liposomes, can greatly improve both stability and target delivery. As part of our work focused on novel ambiphilic mannosylated neoglycolipids as targeted drug delivery systems, we have developed a C14-alkyl-mannopyranoside that forms self-assembled monodisperse liposomes. Herein, these glycoliposomes are investigated as a potential method to improve the plasma stability of peptide-based drugs. Reversed phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) methods were developed to assess the in vitro plasma stability of two structurally diverse peptides, including the kappa opioid receptor selective antagonist dynantin, and the NOD2 innate immune receptor ligand muramyl dipeptide (MDP). The RP-HPLC methods developed were able to resolve the peptides from background plasma contaminants and provided suitable response levels and linearity over an appropriate concentration range. Both compounds were found to be significantly degraded in rat plasma. Increasing degrees of both entrapment and stabilization were noted when dynantin was combined with the C14-alkyl-mannopyranoside in increasing peptide:glycoside ratios. The combination of MDP with the glycolipid also led to peptide entrapment, which greatly improved the plasma stability of the peptide. Overall, the results clearly indicate that the stability of peptide-based structures, which are subject to degradation in plasma, can be greatly improved via entrapment within C14-alkyl-mannopyranoside-bearing glycoliposomes.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Estabilidade de Medicamentos , Dinorfinas/administração & dosagem , Dinorfinas/sangue , Dinorfinas/farmacocinética , Feminino , Glicolipídeos/administração & dosagem , Glicolipídeos/química , Técnicas In Vitro , Lipossomos/administração & dosagem , Lipossomos/química , Nanopartículas/química , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/sangue , Antagonistas de Entorpecentes/farmacocinética , Peptídeos/sangue , Estabilidade Proteica , Proteólise , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/antagonistas & inibidores , Espectrometria de Massas por Ionização por Electrospray
15.
Eur J Med Chem ; 143: 1028-1038, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29232580

RESUMO

In an attempt to develop effective and safe anticancer agents, we designed, synthesized and examined 23 novel quinacrine (QC) derivatives by combining the 9-aminoacridine scaffold and the [1,3]thiazinan-4-ones group. Most of these hybrids showed strong anticancer activities, among which 3-(3-(6-chloro-2-methoxyacridin-9-ylamino)propyl)-2-(thiophen-2-yl)-1,3-thiazinan-4-one (25; VR151) effectively killed many different cancer cell types, including eight breast cancer cell lines with different genetic background, two prostate cancer and two lung cancer cell lines. In contrast, compound 25 is less effective against non-cancer cells, suggesting it may be less toxic to humans. Our data showed that cancer cells are arrested in S phase for a prolonged period due to the down-regulation of DNA replication, leading to eventual cell death. We have also shown that the S phase arrest may be resulted by the down-regulation of cyclin A coupled with the continued up-regulation of cyclin E, which coincide with the down-regulation of mTor-S6K and mTor-4EBP1 pathways.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Quinacrina/análogos & derivados , Tiazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Quinacrina/síntese química , Quinacrina/química , Quinacrina/farmacologia , Relação Estrutura-Atividade , Tiazinas/síntese química , Tiazinas/química
16.
Heliyon ; 2(8): e00147, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27622215

RESUMO

Tobacco smoking is recognized as a global pandemic resulting in 6 million deaths per year. Despite a variety of anti-smoking products available to aid with tobacco cessation, the majority of people who attempt to quit smoking relapse within 6 months due to the addictive nature of nicotine. An immunotherapy approach could offer a promising treatment option by inducing a potent selective antibody response against nicotine in order to block its distribution to the brain and its addictive effects in the central nervous system. Our nicotine vaccine candidate was administered intranasally using the Neisseria meningitidis serogroup B Adjuvant Finlay Proteoliposome 1 (AFPL1) as a part of the delivery system. This system was designed to generate a robust immune response by stimulating IL-1ß production through Toll-like receptor 4 (TLR4), a potent mechanism for mucosal immunity. The vaccine induced high antibody titers in mice sera in addition to inducing mucosal antibodies. The efficacy of our vaccine was demonstrated using in vivo challenge experiments with radioactive [(3)H]-nicotine, followed by an analysis of nicotine distribution in the lung, liver, blood and brain. Our results were encouraging as the nicotine concentration in the brain tissue of mice vaccinated with our candidate vaccine was four times lower than in non-vaccinated controls; suggesting that the anti-nicotine antibodies were able to block nicotine from crossing the blood brain barrier. In summary, we have developed a novel nicotine vaccine for the treatment of tobacco addiction by intranasal administration and also demonstrated that the AFPL1 can be used as a potential adjuvant for this vaccine design.

17.
Microb Cell Fact ; 12: 79, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24021098

RESUMO

BACKGROUND: Nattokinases/Subtilisins (EC 3.4.21.62) belong to the second large family of serine proteases, which gain significant attention and play important role in many biotechnology processes. Thus, a number of nattokinases/subtilisins from various Bacillus species, especially from B. subtilis strains, extensively have been investigated to understand their biochemical and physical properties as well as to improve the production for industrial application. The purpose of this study was to clone a nattokinase gene from Bacillus subtilis strain VTCC-DVN-12-01, enhance its production in B. subtilis WB800, which is deficient in eight extracellular proteases and characterize its physicochemical properties for potential application in organic synthesis and detergent production. RESULTS: A gene coding for the nattokinase (Nk) from B. subtilis strain VTCC-DVN-12-01 consisted of an ORF of 1146 nucleotides, encoding a pre-pro-protein enzyme (30-aa pre-signal peptide, 76-aa pro-peptide and 275-aa mature protein with a predicted molecular mass of 27.7 kDa and pI 6.6). The nattokinase showed 98-99% identity with other nattokinases/subtilisins from B. subtilis strains in GenBank. Nk was expressed in B. subtilis WB800 under the control of acoA promoter at a high level of 600 mg protein per liter culture medium which is highest yield of proteins expressed in any extracellular-protease-deficient B. subtilis system till date. Nk was purified to homogeneity with 3.25 fold purification, a specific activity of 12.7 U/mg, and a recovery of 54.17%. The purified Nk was identified by MALDI-TOF mass spectrometry through three peptides, which showed 100% identity to corresponding peptides of the B. subtilis nattokinase (CAC41625). An optimal activity for Nk was observed at 65 °C and pH 9. The nattokinase was stable at temperature up to 50 °C and in pH range of 5-11 and retained more than 85% of its initial activity after incubation for 1 h. Mg2+ activated Nk up to 162% of its activity. The addition of Triton X-100, Tween 20, and Tween 80 showed an activation of Nk up to 141% of its initial activity but SDS strongly inhibited. The enzyme was highly resistant to organic solvents. CONCLUSIONS: Our findings demonstrated that an eight-protease-gene-deficient Bacillus subtilis WB800 could overproduce the nattokinase from B. subtilis VTCC-DVN-12-01. Due to high resistance to detergents and organic solvents of this nattokinase, it could be potentially applied in organic synthesis and detergent production.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Detergentes/metabolismo , Subtilisinas/biossíntese , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem de Organismos , Eletroforese em Gel de Poliacrilamida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solventes/metabolismo , Subtilisinas/química , Subtilisinas/genética , Subtilisinas/metabolismo
18.
Hum Vaccin Immunother ; 9(7): 1445-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23466688

RESUMO

Oral vaccines have several attractive features; however, due to several challenges, to date, only a limited number of oral vaccines are licensed. Over the past two decades, several oral vehicle delivery systems have been developed to address these challenges and deliver antigens to the target cells in the mucosal immune system. While the size of vehicle delivery systems, the quantity of components in the vehicle formulation, the dose of administration, and even the type of animals species, are important aspects in development of a suitable oral vaccine, our results showed that entrapment of inactivated Vibrio cholera, a component in the structure of Dukoral vaccine into oral vehicle delivery systems, is able to induce a more rigorous humoral immune response in the systemic compartment. We further investigated the mechanism of Dukoral vaccine as a potential stimulator in induction of immune response by immunizing TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. We are hopeful that these findings will lead to development of more precisely-designed oral vaccines in the future.


Assuntos
Vacinas contra Cólera/administração & dosagem , Vacinas contra Cólera/imunologia , Vibrio cholerae/imunologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Administração Oral , Animais , Formação de Anticorpos , Vacinas contra Cólera/uso terapêutico , Imunoglobulina G/sangue , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Veículos Farmacêuticos/farmacologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/uso terapêutico
19.
FEBS J ; 275(21): 5286-97, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18803668

RESUMO

Histone-derived antimicrobial peptides have been identified in various organisms from plants to humans. The rat histone H4 mRNA variants, H4-v.1 and rat histogranin (HNr) mRNAs, were recently reported to be involved in the synthesis of H4-(86-100) and its related peptide HNr, respectively. Herein, the two peptides were investigated for putative antimicrobial activity and found to inhibit growth of gram-negative (Escherichia coli, Pseudomonas aeruginosa) and gram-positive (Bacillus subtilis, Staphylococcus aureus) bacteria. Their inhibitory potencies in E. coli (LD(50): 3.48 and 4.34 microg x mL(-1)) are comparable to that of the antimicrobial peptide LL-37 (LD(50): 4.10 microg x mL(-1)). The antimicrobial activities of H4-(86-100) and HNr depend upon the integrity of the molecules, as precursors [H4-(84-102), pro-HNr] and fragments [bovine histogranin (HNb)-(1-13), HNb-(3-13), H4-(89-102) or OGP] are at least five times less potent than the parent peptides. Among various HN-like compounds, cyclo-(-Gly-pCl-Phe-Tyr-D-Arg) (compound 3) and N-5-guanidino pentanamide-(2R)-yl-2-N-(p-hydroxyphenylacetyl)-4-(p-chlorobenzoyl)-phenylene diamine (compound 8) display antimicrobial activities comparable to that of HNr. Interestingly, the antimicrobial activities of H4-(86-100), HNr and compound 3, like those of quinolone antibiotics acting as DNA gyrase poisons, are potentiated by ATP (1 mM) and coumermycin A1 (a DNA gyrase-linked ATPase inhibitor) and blocked by 2,4-dinitrophenol (DNP, an uncoupler of oxidative phosphorylation) and fluoroacetic acid (a metabolic poison). Finally, in vitro experiments indicate that H4-(86-100), HNr, compound 3 and compound 8, but not HNb-(1-13) or HNb-(3-13), inhibit DNA gyrase-mediated supercoiling of pBR322 DNA. These data indicate that the naturally occurring H4-(86-100) and HNr display antimicrobial effects that involve a modulation of ATP-dependent DNA gyrase.


Assuntos
DNA Girase/efeitos dos fármacos , Histonas/farmacologia , Fragmentos de Peptídeos/farmacologia , Trifosfato de Adenosina , Animais , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas/farmacologia , Ratos
20.
Peptides ; 26(8): 1503-11, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16042990

RESUMO

We studied the expression of the osteogenic and antinociceptive C-terminal histone H4-related peptide fragments, H4-(89-102) (OGP) and H4-(86-100), respectively, within various rat tissues and isolated alveolar macrophages (AM) by radioimmunoassay (RIA). OGP was located mainly within the bone marrow, spleen, thymus, and lungs whereas H4-(86-100) was more concentrated within the bone marrow, lymph nodes, spinal cord, pituitaries and thymus. The expression pattern of the two peptides showed similarities with the tissue expression pattern of the histone H4 mRNA variant H4-v.1. In rat AM, OGP and H4-(86-100) levels were significantly stimulated (2.6- and 1.9-fold, respectively) by LPS (1 microg/ml), along with H4-v.1 mRNA (4.1-fold), but not whole histone H4 (1.1-fold) nor total histone H4 mRNA (1.1-fold). The results suggest that H4-v.1 mRNA may play a role in the synthesis of the naturally occurring peptides H4-(86-100) and OGP via the alternative translation product H4-(84-102), but not whole histone H4.


Assuntos
Histonas/química , Histonas/genética , Macrófagos Alveolares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , RNA Mensageiro/metabolismo , Animais , Especificidade de Anticorpos , Northern Blotting , Cromatografia Líquida de Alta Pressão , Histonas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/química , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Especificidade de Órgãos , Fragmentos de Peptídeos/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Radioimunoensaio , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA