Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38411893

RESUMO

Due to its versatility in formulation and manufacturing, self-emulsifying drug delivery systems (SEDDS) can be used to design parenteral formulations. Therefore, it is necessary to understand the effects of excipients on the behavior of SEDDS formulations upon parenteral administration, particularly their interactions with blood plasma and cell membranes. In this study, we prepared three neutrally charged SEDDS formulations composed of medium-chain triglycerides as the oil phase, polyoxyl-35 castor oil (EL35) and polyethylene glycol (15)-hydroxystearate (HS15) as the nonionic surfactants, medium-chain mono- and diglycerides as the co-surfactant, and propylene glycol as the co-solvent. The cationic surfactant, didodecyldimethylammonium bromide (DDA), and the anionic surfactant, sodium deoxycholate (DEO), were added to the neutral SEDDS preconcentrates to obtain cationic and anionic SEDDS, respectively. SEDDS were incubated with human blood plasma and recovered by size exclusion chromatography. Data showed that SEDDS emulsion droplets can bind plasma protein to different extents depending on their surface charge and surfactant used. At pH 7.4, the least protein binding was observed with anionic SEDDS. Positive charges increased protein binding. SEDDS stabilized by HS15 can adsorb more plasma protein and induce more plasma membrane disruption activity than SEDDS stabilized by EL35. These effects were more pronounced with the HS15 + DDA combination. The addition of DDA and DEO to SEDDS increased plasma membrane disruption (PMD) activities, and DDA (1% w/w) was more active than DEO (2% w/w). PMD activities of SEDDS were concentration-dependent and vanished at appropriate dilution ratios.

2.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961663

RESUMO

Generation of neurons through direct reprogramming has emerged as a promising therapeutic approach for neurodegenerative diseases. Despite successful applications in vitro , in vivo implementation has been hampered by low efficiency. In this study, we present a highly efficient strategy for reprogramming retinal glial cells into neurons by simultaneously inhibiting key negative regulators. By suppressing Notch signaling through the removal of its central mediator Rbpj, we induced mature Müller glial cells to reprogram into bipolar and amacrine neurons in uninjured adult mouse retinas, and observed that this effect was further enhanced by retinal injury. We found that specific loss of function of Notch1 and Notch2 receptors in Müller glia mimicked the effect of Rbpj deletion on Müller glia-derived neurogenesis. Integrated analysis of multiome (scRNA- and scATAC-seq) and CUT&Tag data revealed that Rbpj directly activates Notch effector genes and genes specific to mature Müller glia while also indirectly represses the expression of neurogenic bHLH factors. Furthermore, we found that combined loss of function of Rbpj and Nfia/b/x resulted in a robust conversion of nearly all Müller glia to neurons. Finally, we demonstrated that inducing Müller glial proliferation by AAV (adeno-associated virus)-mediated overexpression of dominant- active Yap supports efficient levels of Müller glia-derived neurogenesis in both Rbpj - and Nfia/b/x/Rbpj - deficient Müller glia. These findings demonstrate that, much like in zebrafish, Notch signaling actively represses neurogenic competence in mammalian Müller glia, and suggest that inhibition of Notch signaling and Nfia/b/x in combination with overexpression of activated Yap could serve as an effective component of regenerative therapies for degenerative retinal diseases.

3.
ACS Appl Mater Interfaces ; 15(34): 40304-40316, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594415

RESUMO

Chitosan (Ch) and different Ch derivatives have been applied in tissue engineering (TE) because of their biocompatibility, favored mechanical properties, and cost-effectiveness. Most of them, however, lack cell adhesive properties that are crucial for TE. In this study, we aimed to design an S-protected thiolated Ch derivative exhibiting high cell adhesive properties serving as a scaffold for TE. 3-((2-Acetamido-3-methoxy-3-oxopropyl)dithio) propanoic acid was covalently attached to Ch via a carbodiimide-mediated reaction. Low-, medium-, and high-modified Chs (Ch-SS-1, Ch-SS-2, and Ch-SS-3) with 54, 107 and 140 µmol of ligand per gram of polymer, respectively, were tested. In parallel, three thiolated Chs, namely Ch-SH-1, Ch-SH-2, and Ch-SH-3, were prepared by conjugating N-acetyl cysteine to Ch at the same degree of modification to compare the effectiveness of disulfide versus thiol modification on cell adhesion. Ch-SS-1 showed better cell adhesion capability than Ch-SS-2 and Ch-SS-3. This can be explained by the more lipophilic surfaces of Ch-SS as a higher modification was made. Although Ch-SH-1, Ch-SH-2, and Ch-SH-3 were shown to be good substrates for cell adhesion, growth, and proliferation, Ch-SS polymers were superior to Ch-SH polymers in the formation of 3D cell cultures. Cryogels structured by Ch-SS-1 (SSg) resulted in homogeneous scaffolds with tunable pore size and mechanical properties by changing the mass ratio between Ch-SS-1 and heparin used as a cross-linker. SSg scaffolds possessing interconnected microporous structures showed good cell migration, adhesion, and proliferation. Therefore, Ch-SS can be used to construct tunable cryogel scaffolds that are suitable for 3D cell culture and TE.


Assuntos
Quitosana , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Acetilcisteína , Carbodi-Imidas , Criogéis
4.
Sci Adv ; 8(49): eabo5000, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490339

RESUMO

Hypoxia is a key characteristic of the breast cancer microenvironment that promotes expression of the transcriptional activator hypoxia-inducible factor 1 (HIF-1) and is associated with poor patient outcome. HIF-1 increases the expression or activity of stem cell pluripotency factors, which control breast cancer stem cell (BCSC) specification and are required for cancer metastasis. Here, we identify nuclear prelamin A recognition factor (NARF) as a hypoxia-inducible, HIF-1 target gene in human breast cancer cells. NARF functions as an essential coactivator by recruiting the histone demethylase KDM6A to OCT4 bound to genes encoding the pluripotency factors NANOG, KLF4, and SOX2, leading to demethylation of histone H3 trimethylated at lysine-27 (H3K27me3), thereby increasing the expression of NANOG, KLF4, and SOX2, which, together with OCT4, mediate BCSC specification. Knockdown of NARF significantly decreased the BCSC population in vitro and markedly impaired tumor initiation capacity and lung metastasis in orthotopic mouse models.


Assuntos
Neoplasias da Mama , Fator 1 Induzível por Hipóxia , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Histonas/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo
5.
Front Cell Dev Biol ; 10: 914386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200040

RESUMO

Direct reprogramming of retinal Müller glia is a promising avenue for replacing photoreceptors and retinal ganglion cells lost to retinal dystrophies. However, questions have recently been raised about the accuracy of studies claiming efficient glia-to-neuron reprogramming in retina that were conducted using GFAP mini promoter-driven adeno-associated virus (AAV) vectors. In this study, we have addressed these questions using GFAP mini promoter-driven AAV constructs to simultaneously overexpress the mCherry reporter and candidate transcription factors predicted to induce glia-to-neuron conversion, in combination with prospective genetic labeling of retinal Müller glia using inducible Cre-dependent GFP reporters. We find that, while control GFAP-mCherry constructs express faithfully in Müller glia, 5 out of 7 transcription factor overexpression constructs tested are predominantly expressed in amacrine and retinal ganglion cells. These findings demonstrate strong insert-dependent effects on AAV-based GFAP mini promoter specificity that preclude its use in inferring cell lineage relationships when studying glia-to-neuron conversion in retina.

6.
ACS Appl Mater Interfaces ; 14(39): 44981-44991, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36125912

RESUMO

AIM: This study aimed to develop phosphatase-responsive ζ potential converting nanocarriers utilizing polyphosphate-coated cell-penetrating peptide (CPP)-decorated nanoemulsions (NEs) as a novel gene delivery system to retinal cells. METHODS: Poly-l-lysine (PLL) was first conjugated with oleylamine (OA) only at its carboxylic end to form the amphiphilic PLL-oleylamine (PLOA) conjugate. Afterward, NEs were loaded with PLOA prior to being coated with tripolyphosphate (TPP) to generate PLOA/TPP NEs. A plasmid containing a reporter gene for green fluorescent protein plasmid (pGFP) was complexed with cationic surfactants forming hydrophobic ion pairs that were loaded in the oily core of NEs. Phosphate removal, ζ potential conversion, and cytotoxicity of the system were evaluated. Cellular uptake and transfection efficiency were investigated in 661W photoreceptor-like cells via microscopic analysis, fluorescence spectroscopy, and flow cytometry. RESULTS: Dephosphorylation of PLOA/TPP NEs triggered by alkaline phosphatase (ALP) resulted in the exposure of positive amine groups on the surface of NE droplets and a notable conversion of the ζ potential from -22.4 to +8.5 mV. Cellular uptake of PLOA/TPP NEs performed on 661W photoreceptor-like cells showed a 3-fold increase compared to control NEs. Furthermore, PLOA/TPP NEs also showed low cytotoxicity and high transfection efficacy with ∼50% of cells transfected. CONCLUSIONS: Polyphosphate-coated CPP-decorated NEs triggered by ALP could be a promising nanosystem to efficiently deliver drugs and genetic materials to photoreceptor-like cells and other retinal cells for potential treatments of retinal diseases.


Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Fosfatase Alcalina , Aminas , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Nanopartículas/química , Polilisina , Polifosfatos/química , Tensoativos/química
7.
J Colloid Interface Sci ; 628(Pt A): 463-475, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932682

RESUMO

HYPOTHESIS: The aim of this study was the development of nanostructured lipid carriers (NLCs) decorated with a polycationic cell-penetrating peptide (CPP). A coating with polyphosphates (PP) enables charge conversion at target cells being triggered by the membrane bound enzyme intestinal alkaline phosphatase (IAP). EXPERIMENTS: The CPP, stearyl-nona-L-arginine (R9SA) was obtained by solid phase synthesis. Formed nanocarriers were characterized regarding size, polydispersity index, zeta potential and charge conversion in the presence of IAP and on Caco-2 cells. The BCS class IV drug saquinavir (SQV) was loaded into NLCs in different concentrations. Mucus diffusion ability of the NLCs was evaluated by the rotating tube method. Furthermore, cellular uptake was evaluated on Caco-2 cells and endosomal escape properties were investigated using erythrocytes. FINDINGS: All NLCs were obtained in a size range between 146 nm and 152 nm and a polydispersity index of 0.2. Incubation of PP coated PP-R9SA-NLCs with IAP led to a charge conversion from -41.8 mV to 6.4 mV (Δ48.2 mV). After four hours of incubation with IAP, phosphate release reached a plateau, indicating a faster polyphosphate cleavage than on Caco-2. Drug load and encapsulation efficiency of SQV was obtained up to 80.6% and 46.5 µg/mg. Mucus diffusion was increasing in the following rank order: R9SA-NLCs < blank NLCs < PP-R9SA-NLCs. R9SA-NLCs and PP-R9SA-NLCs increased the cellular uptake 15.6- and 13.2-fold, respectively, compared to the control NLCs. Erythrocytes interaction study revealed enhanced endosomal escape properties for R9SA-NLCs and PP-R9SA-NLCs when incubated with IAP.


Assuntos
Peptídeos Penetradores de Células , Nanoestruturas , Fosfatase Alcalina , Células CACO-2 , Portadores de Fármacos/química , Humanos , Lipídeos/química , Nanoestruturas/química , Tamanho da Partícula , Polifosfatos , Saquinavir/química
8.
Int J Pharm ; 618: 121633, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35304244

RESUMO

AIM: Evaluation of different polyhydroxy surfaces in SEDDS to overcome the limitations associated with conventional polyethylene glycol (PEG)-based SEDDS surfaces for intracellular drug delivery. METHODS: Anionic, cationic and non-ionic polyglycerol- (PG-) and alkylpolyglucoside- (APG-) surfactant based SEDDS were developed and compared to conventional PEG-SEDDS. Particular emphasis was placed on the impact of SEDDS surface decoration on size and zeta potential, drug loading and protective effect, mucus diffusion, SEDDS-cell interaction and intracellular delivery of the model drug curcumin. RESULTS: After self-emulsification, SEDDS droplets sizes were within the range of 35-190 nm. SEDDS formulated with high amounts of long PEG-chain surfactants (>10 monomers) a charge-shielding effect was observed. Replacing PEG-surfactants with PG- and an APG-surfactant did not detrimentally affect SEDDS self-emulsification, payloads or the protection of incorporated curcumin towards oxidation. PG- and APG-SEDDS bearing multiple hydroxy functions on the surface demonstrated mucus permeation comparable to PEG-SEDDS. Steric hinderance and charge-shielding of PEG-SEDDS surface substantially reduced cellular uptake up to 50-fold and impeded endosomal escape, yielding in a 20-fold higher association of PEG-SEDDS with lysosomes. In contrast, polyhydroxy-surfaces on SEDDS promoted pronounced cellular internalisation and no lysosomal co-localisation was observed. This improved uptake resulted in an over 3-fold higher inhibition of tumor cell proliferation after cytosolic curcumin delivery. CONCLUSION: The replacement of PEG-surfactants by surfactants with polyhydroxy head groups in SEDDS is a promising approach to overcome the limitations for intracellular drug delivery associated with conventional PEGylated SEDDS surfaces.


Assuntos
Curcumina , Tensoativos , Sistemas de Liberação de Medicamentos/métodos , Emulsificantes/metabolismo , Emulsões , Excipientes , Polietilenoglicóis , Solubilidade
9.
Carbohydr Polym ; 282: 119143, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123754

RESUMO

AIM: To prepare new polycationic pullulan derivatives exhibiting highly mucoadhesive and sustained drug release properties. METHODS: Hydroxy groups of pullulan were activated with mesyl chloride followed by conjugation with low-molecular weight polyamines. Pullulan-tris(2-aminoethyl)amine (Pul-TAEA) and pullulan-polyethyleneimine (Pul-PEI) were evaluated regarding swelling behaviour, mucoadhesive properties and potential to control drug release. RESULTS: Pul-TAEA and Pul-PEI exhibited excellent swelling properties at pH 6.8 showing 240- and 370-fold increase in weight. Compared to unmodified pullulan, Pul-TAEA and Pul-PEI displayed 5- and 13.3-fold increased dynamic viscosity in mucus. Mucoadhesion studies of Pul-TAEA and Pul-PEI on intestinal mucosa showed a 6- and 37.8-fold increase in tensile strength, and a 72- and 120-fold increase in mucoadhesion time compared to unmodified pullulan, respectively. Due to additional ionic interactions between cationic groups on polyaminated pullulans and an anionic model drug, a sustained drug release was achieved. CONCLUSIONS: Polyaminated pullulans are promising novel mucoadhesive excipients for mucosal drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Etilenodiaminas , Glucanos , Mucosa Intestinal/química , Polietilenoimina , Adesividade , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Etilenodiaminas/administração & dosagem , Etilenodiaminas/química , Glucanos/administração & dosagem , Glucanos/química , Glicosídeo Hidrolases/química , Humanos , Muco/química , Polietilenoimina/administração & dosagem , Polietilenoimina/química , Reologia , Suínos , Resistência à Tração , Viscosidade
10.
Cell Rep ; 37(7): 109994, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788628

RESUMO

Gene regulatory networks (GRNs), consisting of transcription factors and their target sites, control neurogenesis and cell-fate specification in the developing central nervous system. In this study, we use integrated single-cell RNA and single-cell ATAC sequencing (scATAC-seq) analysis in developing mouse and human retina to identify multiple interconnected, evolutionarily conserved GRNs composed of cell-type-specific transcription factors that both activate genes within their own network and inhibit genes in other networks. These GRNs control temporal patterning in primary progenitors, regulate transition from primary to neurogenic progenitors, and drive specification of each major retinal cell type. We confirm that NFI transcription factors selectively activate expression of genes promoting late-stage temporal identity in primary retinal progenitors and identify other transcription factors that regulate rod photoreceptor specification in postnatal retina. This study inventories cis- and trans-acting factors that control retinal development and can guide cell-based therapies aimed at replacing retinal neurons lost to disease.


Assuntos
Padronização Corporal/genética , Linhagem da Célula/genética , Neurogênese/genética , Retina/embriologia , Animais , Diferenciação Celular/genética , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos/embriologia , Fatores de Transcrição NFI/metabolismo , Neurônios Retinianos/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transativadores/metabolismo
11.
FASEB J ; 35(11): e21961, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34665878

RESUMO

Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.


Assuntos
Hipóxia Celular , Embrião não Mamífero/metabolismo , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Oxigênio/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Estresse Oxidativo
12.
Acta Biomater ; 135: 139-149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418540

RESUMO

In recent decades, three generations of thiomers have been developed with the main purpose of obtaining enhanced interactions with mucosal tissues. Therefore, many different types of thiolated ligands have been generated and attached to polymeric backbones. The aim of this study was to synthesize all three generations of thiomers and to directly compare their properties regarding mucus penetration and mucoadhesion. Starting from pectin, the unprotected thiomer pectin-cysteine (Pec-Cys), the preactivated S-protected thiomer pectin-cysteine-mercaptonicotinic acid (Pec-Cys-MNA) and the less reactive S-protected thiomer pectin-cysteine-glutathione (Pec-Cys-GSH) were synthesized and characterised by FT-IR, NMR, and colorimetric studies. The polymers were evaluated regarding their cytotoxicity, swelling behaviour, viscosity after mixing with mucus, mucus diffusion, penetration into mucosa, and mucoadhesion. The amount of the three ligands (Cys, Cys-MNA and Cys-GSH) bound to the polymer was determined to be in the range of 193-196 µmol/g. All polymers showed no cytotoxicity. Viscosity of the mixture of Pec-Cys-MNA and Pec-Cys-GSH with mucus increased 21.5- and 26.7-fold, respectively, compared to the unmodified polymer within 3 hours. Swelling, mucoadhesion, interpenetration and mucus diffusion were increased in the following rank order: Pec-Cys < Pec-Cys-MNA < Pec-Cys-GSH. Results of mucoadhesion study indicated a 7.4 and 8.1-fold increase of Pec-Cys-MNA and Pec-Cys-GSH, respectively, compared to the unmodified polymer. As the less reactive S-protected thiomer exhibited higher mucoadhesive properties than the other thiomers, this study provides evidence for the superior mucoadhesion of 3rd generation thiomers. STATEMENT OF SIGNIFICANCE: Three generations of thiolated polymers have been developed bearing different types of thiol ligands with the main purpose of enhancing mucus interactions. In this study, all generations were synthesized on the polymeric backbone of pectin for the first time to directly compare their mucus penetrating and mucoadhesive properties. 1st generation exhibited covalently bound L-cysteine moieties. For 2nd generation, thiols of cysteines were S-protected with 2-mercaptonicotinic acid (MNA), resulting in high reactive disulfide bonds. 3rd generation was synthesized by a thiol/disulfide exchange of glutathione with MNA, producing a less reactive disulfide bond. Mucus penetrating and mucoadhesive properties were found to be increased as follows: 1st generation < 2nd generation < 3rd generation. According to these results, the thiomer of 3rd generation represents a promising excipient with strong mucoadhesion.


Assuntos
Pectinas , Compostos de Sulfidrila , Células CACO-2 , Cisteína , Sistemas de Liberação de Medicamentos , Humanos , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34452909

RESUMO

Hypoxia-inducible factors (HIFs) activate transcription of target genes by recruiting coactivators and chromatin-modifying enzymes. Peptidylarginine deiminase 4 (PADI4) catalyzes the deimination of histone arginine residues to citrulline. Here, we demonstrate that PADI4 expression is induced by hypoxia in a HIF-dependent manner in breast cancer and hepatocellular carcinoma cells. PADI4, in turn, is recruited by HIFs to hypoxia response elements (HREs) and is required for HIF target gene transcription. Hypoxia induces histone citrullination at HREs that is PADI4 and HIF dependent. RNA sequencing revealed that almost all HIF target genes in breast cancer cells are PADI4 dependent. PADI4 is required for breast and liver tumor growth and angiogenesis in mice. PADI4 expression is correlated with HIF-1α expression and vascularization in human breast cancer biopsies. Thus, HIF-dependent recruitment of PADI4 to target genes and local histone citrullination are required for transcriptional responses to hypoxia.


Assuntos
Neoplasias da Mama , Histonas , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Citrulinação , Feminino , Histonas/metabolismo , Humanos , Hidrolases/genética , Hipóxia/genética , Camundongos , Neovascularização Patológica/genética , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593892

RESUMO

Reducing the costs from human-wildlife conflict, mostly borne by marginal rural households, is a priority for conservation. We estimate the mean species-specific cost for households suffering damages from one of 15 major species of wildlife in India. Our data are from a survey of 5,196 households living near 11 wildlife reserves in India, and self-reported annual costs include crop and livestock losses and human casualties (injuries and death). By employing conservative estimates from the literature on the value of a statistical life (VSL), we find that costs from human casualties overwhelm crop and livestock damages for all species associated with fatalities. Farmers experiencing a negative interaction with an elephant over the last year incur damages on average that are 600 and 900 times those incurred by farmers with negative interactions with the next most costly herbivores: the pig and the nilgai. Similarly, farmers experiencing a negative interaction with a tiger over the last year incur damage that is on average 3 times that inflicted by a leopard and 100 times that from a wolf. These cost differences are largely driven by differences in the incidence of human death and casualties. Our estimate of costs fluctuates across reserves, mostly due to a variation of human casualties. Understanding the drivers of human casualties and reducing their incidence are crucial to reducing the costs from human-wildlife conflict.Most of the tales were about animals, for the Jungle was always at their door. The deer and the pig grubbed up their crops, and now and again the tiger carried off a man at twilight, within sight of the village gates. "Tiger! Tiger!" (Rudyard Kipling, The Jungle Book, Collins Classics, 2010).


Assuntos
Conservação dos Recursos Naturais/economia , Custos e Análise de Custo , Produtos Agrícolas/economia , Gado/fisiologia , Comportamento Predatório/fisiologia , Animais , Animais Selvagens , Fazendeiros , Humanos , Opinião Pública
15.
J Colloid Interface Sci ; 587: 279-289, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360901

RESUMO

AIM: It was the aim of this study to develop a zeta potential changing drug delivery system by decorating lipid-based nanocarriers with a polycationic cell penetrating peptide (CPP) and subsequently masking these cationic substructures with polyphosphates. METHODS: In order to anchor the CPP poly-l-lysine (PLL) on the surface of the oily droplets of an o/w nanoemulsion, stearic acid was covalently attached to the peptide. The resulting CPP-decorated oily droplets were coated with phytic acid and tripolyphosphate. The elimination of these polyphosphates due to cleavage by alkaline phosphatase was monitored by the release of monophosphate from the surface of the nanocarriers, by the change in zeta potential and by cellular uptake studies on Caco-2 cells. RESULTS: Polyphosphate coated PLL-decorated nanocarriers exhibited a pronounced conversion of zeta potential from -14.1 mV to +4.2 mV in case of tripolyphosphate coated nanocarriers and from -9.9 mV to -2.6 mV in case of phytic acid coated nanocarriers. The cellular uptake on Caco-2 cells of the polyphosphate coated nanocarriers was 4-fold improved compared to the control nanocarriers. Furthermore, confocal images showed that the majority of nanodroplets distributed in cytoplasm not being internalized into lysosomes. CONCLUSION: Polyphosphate coating of CPP-decorated nanocarriers seems to be a promising and simple strategy to overcome the polycation dilemma.


Assuntos
Sistemas de Liberação de Medicamentos , Polifosfatos , Células CACO-2 , Humanos , Polieletrólitos
16.
Eur J Pharm Sci ; 162: 105658, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271277

RESUMO

AIM: The aim of this study was to form hydrophobic ion-pairs of proteinase with cationic surfactants and to incorporate them into self-emulsifying drug delivery systems (SEDDS) to improve their mucus permeating properties. METHODS: Proteinase was ion-paired with benzalkonium chloride (BAK), hexadecylpyridinium chloride (HDP), alkyltrimethylammonium bromide (ATA) and hexadecyltrimethylammonium bromide (HDT) at pH 8.5-9.0, and subsequently incorporated into SEDDS consisting of Cremophor EL, propylene glycol, and Capmul 808-G (40/20/40). Mucus permeation of SEDDS containing proteinase complexes was evaluated via rotating tube technique and cell-free Transwell® insert system. Additionally, enzymatic activity of proteinase complexes as well as their potential cytotoxicity was evaluated. RESULTS: Among all tested hydrophobic ion-pairs, proteinase/BAK showed highest potential. Mucus diffusion of SEDDS containing proteinase/BAK complex yielded in 2.3-fold and 2.5-fold higher mucus permeability with respect to blank SEDDS at Transwell® insert system and rotating tube technique, respectively. Furthermore, proteinase/BAK complex maintained the highest enzymatic activity of 50.5 ± 5.6% compared to free proteinase. At a SEDDS concentration as low as 0.006% cell viability was just 80%. The addition of proteinase complexes to SEDDS increased cytotoxicity on Caco-2 cells in a concentration-dependent manner. CONCLUSION: SEDDS loaded with proteinase/BAK complexes are promising nanocarriers because of enhanced mucus permeating properties.


Assuntos
Emulsificantes , Expectorantes , Células CACO-2 , Sistemas de Liberação de Medicamentos , Emulsões , Humanos , Peptídeo Hidrolases
17.
Nanomedicine (Lond) ; 15(19): 1829-1841, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32781886

RESUMO

Aim: Comparison of the impact of polyethylene glycol (PEG) and polyglycerol (PG) surface decoration on self-emulsifying drug delivery system (SEDDS)-membrane interaction and cellular uptake. Materials & methods: PEG-, PEG/PG- and PG-SEDDS were assessed regarding their self-emulsifying properties, surface charge, bile salt fusibility, cellular uptake and interaction with endosome-mimicking membranes. Results: SEDDS exhibited droplet sizes between 150 and 175 nm, a narrow size distribution and self-emulsified within 7 min. Higher PEG-surfactant amounts in SEDDS resulted in charge-shielding and thus in a decrease of ζ potential up to Δ11 mV. The inert PEG-surface hampered bile salt fusion and interfered SEDDS-cell interaction. By reducing the PEG-surfactant amount to 10%, cellular uptake increased twofold compared with PEG-SEDDS containing 40% PEG-surfactant. PG-SEDDS containing no PEG-surfactants showed a threefold increased cellular uptake. Furthermore, complete replacement of PEG-surfactants by PG-surfactants led to enhanced cellular interaction and improved disruption endosome-like membranes. Conclusion: PG-surfactants demonstrated high potential to address PEG-surface associated drawbacks in SEDDS.


Assuntos
Emulsificantes , Polietilenoglicóis , Células CACO-2 , Sistemas de Liberação de Medicamentos , Emulsões , Glicerol , Humanos , Polímeros , Solubilidade
18.
Med Arch ; 74(2): 100-104, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32577049

RESUMO

INTRODUCTION: Chronic venous insufficiency (CVI) is a chronic condition, triggered by reflux through the saphenous vein network. AIM: To determine the efficacy of endovenous laser ablation (LA) and radiofrequency ablation (RFA) for CVI treatment in the lower extremities, at the Bach Mai Radiology Center. METHODS: This retrospective study was approved by the institutional review board of Bach Mai Hospital. The study recruited 49 people, from August 2016 to April 2018, with recurrent venous insufficiency in the lower extremities and measured 56 ablated veins. RESULTS: In this study, 8 patients (10 veins, with a mean diameter of 5.83 ± 0.96 mm) were treated with RFA, and 41 patients (46 veins, with a mean diameter of 7.96 ± 3.47 mm) were treated with LA. The occlusion rates for LA- and RFA-treated veins were very effective, at 95.7% and 90%, respectively. No significant differences in occlusion rates or clinical improvements were observed between the two ablation methods. On the first day post-treatment, the visual analog score (VAS) value for the LA group was significantly higher than that for the RFA group. Furthermore, ecchymosis, 1 day after treatment, and hyperpigmentation, paresthesia, and numbness, 1 month after treatment, were only observed in the LA group. CONCLUSION: Both LA and RFA were minimally-invasive and safe therapies. No serious complications requiring further interventions were reported and the treatment effectively improved the clinical symptoms of patients. Based on our study, we recommend that RFA should be considered for moderate dilated saphenous vein cases, whereas LA should be indicated for large dilated saphenous vein cases, with or without aneurysm.


Assuntos
Terapia a Laser/métodos , Complicações Pós-Operatórias/epidemiologia , Ablação por Radiofrequência/métodos , Veia Safena/cirurgia , Varizes/cirurgia , Insuficiência Venosa/cirurgia , Adulto , Idoso , Equimose/epidemiologia , Procedimentos Endovasculares , Feminino , Humanos , Hiperpigmentação/epidemiologia , Hipestesia/epidemiologia , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Parestesia/epidemiologia , Resultado do Tratamento , Vietnã/epidemiologia
19.
Int J Pharm ; 583: 119371, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339632

RESUMO

AIM: Development of a preactivated thiomer as sprayable excipient for mucoadhesive formulations. METHODS: CG4500 (acrylic acid/acrylamide-methyl propane sulfonic acid copolymer) was thiolated by conjugation with L-cysteine and preactivated by further modification with 2-mercaptonicotinic acid (MNA) in a two-step synthesis and characterized regarding degree of modification and cytotoxicity on Caco-2 cells. The mucoadhesive properties of this novel thiomer were evaluated via rheological synergism, tensile and mucosal residence time studies. Furthermore, the sprayability of the thiomer was evaluated. RESULTS: The newly synthesized derivatives CG4500-SH and CG4500-S-S-MNA showed mean coupling rates of 651 µmol thiol groups and 264 µmol MNA per gram polymer, respectively. Even for the unmodified polymer a rheological synergism was observed with isolated porcine intestinal mucus, which was 2.81-fold higher in case of the preactivated thiomer. Mucoadhesion studies on freshly excised porcine intestinal mucosa confirmed these results via a 2.43-fold higher total work of adhesion and a 2.31-fold higher mucosal residence time of the preactivated thiomer. In sprayability tests it was shown that solutions of the preactivated thiomer could be sprayed in concentrations up to 12% (m/V). CONCLUSION: The novel polymer CG4500-S-S-MNA is a promising sprayable excipient for mucoadhesive formulations.


Assuntos
Acrilamida , Acrilatos , Cisteína , Ácidos Nicotínicos , Polímeros , Compostos de Sulfidrila , Ácidos Sulfônicos , Acrilamida/administração & dosagem , Acrilamida/química , Acrilatos/administração & dosagem , Acrilatos/química , Adesividade , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Cisteína/administração & dosagem , Cisteína/química , Humanos , Mucosa Intestinal/química , Muco/química , Ácidos Nicotínicos/administração & dosagem , Ácidos Nicotínicos/química , Polímeros/administração & dosagem , Polímeros/química , Reologia , Compostos de Sulfidrila/administração & dosagem , Compostos de Sulfidrila/química , Ácidos Sulfônicos/administração & dosagem , Ácidos Sulfônicos/química , Suínos
20.
Int J Biol Macromol ; 147: 473-481, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926921

RESUMO

The purpose of this study is to develop a potential pathway for grafting polymers onto wool fibers based on thiol-disulfide exchange reactions. S-protected thiolated starch (PTS) was synthesized by coupling 3-(2-pyridyldithio) propanoic acid to starch through esterification, resulting in 417.3 ± 15.1 µmol ligand binding to 1 g of starch. PTS was labelled with fluorescein isothiocyanate (FITC) prior to grafting. Wool fibers were preactivated by raising the amount of thiol groups utilizing mild reducing agents. The highest degree of preactivation on the surface of wool fibers was achieved by a 0.2% (w/v) sodium borohydride and 1.5% (w/v) sodium bisulfite mixture pH 5.0 resulting in 182.6 ± 8.7 µmol thiol groups per gram of fibers. Different incubation times and ratios between FITC-labelled PTS and wool fibers were investigated. A graft yield of 58.5% was achieved at a ratio of 1:1.5 (w/w) between wool fibers and FITC-labelled PTS within 18 h of incubation. Successful coating of PTS on wool fibers was confirmed by confocal imaging, scanning electron microscopy and FT-IR. Mechanical properties of grafted wool fibers were tested regarding elongation and tensile strength. These results provide evidence for the potential of S-protected thiolated starch as a superior coating material for wool fibers.


Assuntos
Amido/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fibra de Lã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA