Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Data Brief ; 43: 108474, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35898857

RESUMO

Cryogenic Propellant management is a critical roadblock to enable long term space missions. Commonly used propellants (liquid hydrogen and methane) undergo constant vaporization but there is limited knowledge on the phase change rate and its implications on long term storage stability. This is, in part, due to the inability to image the liquid-vapor mixture inside opaque metallic containers at cryogenic temperatures. Here, neutron imaging is used as a visualization technique to track the liquid-vapor interface inside Al 6061 and SS 316 test cells. The data contains first known images of steady evaporation/condensation in cryogenic propellants. The experiments were conducted at the NIST Center for Neutron Research using the BT-2 Neutron Imaging facility. The test cells were instrumented with temperature sensors and inserted into a 70-mm liquid helium cryostat before being placed into the neutron beam. Temperatures and pressures were altered to achieve condensation/evaporation and Neutron images were captured during the entire phase change process. Phase change rates were obtained through image processing. The data contains raw images and processed phase change rates along with experimental temperature and pressure. The one-of-a-kind data could be used for model validation, correlation development or serve as a benchmark for future experiments.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35656844

RESUMO

Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.

3.
Mol Pharm ; 18(12): 4415-4427, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34699230

RESUMO

Biopharmaceutical formulations may be compromised by freezing, which has been attributed to protein conformational changes at a low temperature, and adsorption to ice-liquid interfaces. However, direct measurements of unfolding/conformational changes in sub-0 °C environments are limited because at ambient pressure, freezing of water can occur, which limits the applicability of otherwise commonly used analytical techniques without specifically tailored instrumentation. In this report, small-angle neutron scattering (SANS) and intrinsic fluorescence (FL) were used to provide in situ analysis of protein tertiary structure/folding at temperatures as low as -15 °C utilizing a high-pressure (HP) environment (up to 3 kbar) that prevents water from freezing. The results show that the α-chymotrypsinogen A (aCgn) structure is reasonably maintained under acidic pH (and corresponding pD) for all conditions of pressure and temperature tested. On the other hand, reversible structural changes and formation of oligomeric species were detected near -10 °C via HP-SANS for ovalbumin under neutral pD conditions. This was found to be related to the proximity of the temperature of cold denaturation of ovalbumin (TCD ∼ -17 °C; calculated via isothermal chemical denaturation and Gibbs-Helmholtz extrapolation) rather than a pressure effect. Significant structural changes were also observed for a monoclonal antibody, anti-streptavidin IgG1 (AS-IgG1), under acidic conditions near -5 °C and a pressure of ∼2 kbar. The conformational perturbation detected for AS-IgG1 is proposed to be consistent with the formation of unfolding intermediates such as molten globule states. Overall, the in situ approaches described here offer a means to characterize the conformational stability of biopharmaceuticals and proteins more generally under cold-temperature stress by the assessment of structural alteration, self-association, and reversibility of each process. This offers an alternative to current ex situ methods that are based on higher temperatures and subsequent extrapolation of the data and interpretations to the cold-temperature regime.


Assuntos
Dobramento de Proteína , Estabilidade Proteica , Quimotripsinogênio/química , Temperatura Baixa , Fluorescência , Difração de Nêutrons , Pressão , Conformação Proteica , Espalhamento a Baixo Ângulo , Termodinâmica
4.
J Phys Chem C Nanomater Interfaces ; 125(30): 16689-16699, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34476037

RESUMO

Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically operate at close to room temperature. To unlock their technological potential, strategies are needed to stabilize these superionic properties down to subambient temperatures. One such strategy involves altering the bulk properties by confinement within nanoporous insulators. In the current study, the unique structural and ion dynamical properties of an exemplary salt, NaCB11H12, nanodispersed within porous, high-surface-area silica via salt-solution infiltration were studied by differential scanning calorimetry, X-ray powder diffraction, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and impedance spectroscopy. Combined results hint at the formation of a nanoconfined phase that is reminiscent of the high-temperature superionic phase of bulk NaCB11H12, with dynamically disordered CB11H12 - anions exhibiting liquid-like reorientational mobilities. However, in contrast to this high-temperature bulk phase, the nanoconfined NaCB11H12 phase with rotationally fluid anions persists down to cryogenic temperatures. Moreover, the high anion mobilities promoted fast-cation diffusion, yielding Na+ superionic conductivities of ∼0.3 mS/cm at room temperature, with higher values likely attainable via future optimization. It is expected that this successful strategy for conductivity enhancement could be applied as well to other related polyhedral (carba)borate-based salts. Thus, these results present a new route to effectively utilize these types of superionic salts as solid-state electrolytes in future battery applications.

5.
J Phys Chem Lett ; 12(20): 4951-4957, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34009998

RESUMO

Negative compressibility (NC) is a phenomenon when an object expands/shrinks in at least one of its dimensions upon compression/decompression. NC is very rare and is of great interest for a number of applications. In this work a gigantic (more than one order of magnitude higher compared to the reported values) NC effect was recorded during intrusion-extrusion of a non-wetting liquid into a flexible porous structure. For this purpose, in situ high-pressure neutron scattering, intrusion-extrusion experiments, and DFT calculations were applied to a system consisting of water and a highly hydrophobic Cu2(tebpz) metal-organic framework (MOF), which upon water penetration expands in a and c directions to demonstrate NC coefficients more than order of magnitude higher compared to the highest values ever reported. The proposed approach is not limited to the materials used in this work and can be applied to achieve coefficients of negative linear compressibility of more than 103 TPa-1.

6.
ACS Nano ; 15(5): 9048-9056, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33982556

RESUMO

Efficient and compact energy conversion is at the heart of the sustainable development of humanity. In this work it is demonstrated that hydrophobic flexible nanoporous materials can be used for thermal-to-mechanical energy conversion when coupled with water. In particular, a reversible nonhysteretic wetting-drying (contraction-expansion) cycle provoked by periodic temperature fluctuations was realized for water and a superhydrophobic nanoporous Cu2(tebpz) MOF (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate). A thermal-to-mechanical conversion efficiency of ∼30% was directly recorded by high-precision PVT-calorimetry, while the operational cycle was confirmed by in operando neutron scattering. The obtained results provide an alternative approach for compact energy conversion exploiting solid-liquid interfacial energy in nanoscopic flexible heterogeneous systems.

7.
Nano Lett ; 21(7): 2848-2853, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759533

RESUMO

Materials or systems demonstrating negative linear compressibility (NLC), whose size increases (decreases) in at least one of their dimensions upon compression (decompression) are very rare. Materials demonstrating this effect in all their dimensions, negative volumetric compressibility (NVC), are exceptional. Here, by liquid porosimetry and in situ neutron diffraction, we show that one can achieve exceptional NLC and NVC values by nonwetting liquid intrusion in flexible porous media, namely in the ZIF-8 metal-organic framework (MOF). Atomistic simulations show that the volumetric expansion is due to the presence of liquid in the windows connecting the cavities of ZIF-8. This discovery paves the way for designing novel materials with exceptional NLC and NVC at reasonable pressures suitable for a wide range of applications.

8.
Langmuir ; 37(6): 2170-2178, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533619

RESUMO

The past decade has seen increased research interest in studying bicontinuous structures formed via colloidal self-assembly due to their many useful applications. A new type of colloidal gel, solvent segregation-driven gel (SeedGel), has been recently demonstrated as an effective approach to arrest bicontinuous structures with unique and intriguing properties, such as thermoreversibility, structural reproducibility, and sensitive temperature response. Here, using a model system with silica particles in the 2,6-lutidine/water binary solvent, we investigate the factors controlling the domain size of a SeedGel system by varying the particle concentration, solvent ratio, and quenching protocol. A phase diagram is identified to produce SeedGels for this model system. Our results indicate that by adjusting the sample composition, it is possible to realize bicontinuous domains with well-controlled repeating distances (periodicities). In addition, the effect of quenching rate on the domain size is systematically investigated, showing that it is a very sensitive parameter to control domain sizes. By further heating SeedGel up into the spinodal region, the structure evolution under high temperatures is also investigated and discussed. These results provide important insights into how to control bicontinuous structures in SeedGel systems.

9.
J Phys Chem Lett ; 12(1): 392-398, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356292

RESUMO

Using neutron spin-echo spectroscopy, we studied the microscopic structural relaxation of a prototypical network ionic liquid ZnCl2 at the structure factor primary peak and prepeak. The results show that the relaxation at the primary peak is faster than the prepeak and that the activation energy is ∼33% higher. A stretched exponential relaxation is observed even at temperatures well-above the melting point Tm. Surprisingly, the stretching exponent shows a rapid increase upon cooling, especially at the primary peak, where it changes from a stretched exponential to a simple exponential on approaching the Tm. These results suggest that the appearance of glassy dynamics typical of the supercooled state even in the equilibrium liquid state of ZnCl2 as well as the difference of activation energy at the two investigated length scales are related to the formation of a network structure on cooling.

10.
J Am Ceram Soc ; 103(11)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37533536

RESUMO

The effect of a high-performance retarding additive in oil well cements was investigated under elevated temperature (165°C) and pressure (1000 psi) conditions via in situ synchrotron-based X-ray diffraction (XRD) and quasielastic neutron scattering (QENS) techniques. Under these temperature and pressure conditions, crystalline calcium silicate hydrates (C-S-H) are formed through the cement hydration process. From in situ XRD experiments, the retardation effect was observed by a change in the rate of the appearance of 11 Å tobermorites as well as a change in the rate of the α-C2SH generation and depletion. QENS analysis revealed that the retardation effect was related to the non-conversion of free water to chemical and constrained water components. A high presence of free water components was attributed to a decrease in 11 Å tobermorites along with slower consumption of the quartz and portlandite phases. Furthermore, QENS results infer that the water molecules experienced confinement in the restricted pore spaces. The retarder inhibited this initial water confinement by slowing the bulk diffusion of free water in the confined region.

11.
J Neutron Res ; 22(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-37588655

RESUMO

A newly developed polychromatic beam neutron reflectometer CANDOR (Chromatic Analysis Neutron Diffractometer Or Reflectometer) on NG-1 at the NIST Center for Neutron research (NCNR) utilizes a wavelength-sensitive neutron detector consisting of 324 analyzing highly-oriented pyrolytic graphite (HOPG) crystals positioned sequentially in rows. Known for having a small thermal diffuse scattering cross section, HOPG crystals can lead to low signal-to-noise ratios in wavelength-sensitive detectors such as CANDOR. Even though it is possible to mathematically separate the desired signal from thermal diffuse scattering; by cooling the detector array of HOPG crystals in order to minimize the Debye Waller effect generates a better solution to this problem. In this heat transfer analysis study we show, within the instrument design constrains and thermodynamic considerations, technical feasibility and test results for the development of the New Polychromatic Beam Neutron Reflectometer CANDOR (Chromatic Analysis Neutron Diffractometer Or Reflectometer) at the NIST Center for Neutron Research.

12.
ACS Appl Mater Interfaces ; 11(43): 40842-40849, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31577412

RESUMO

In this article, the effect of a porous material's flexibility on the dynamic reversibility of a nonwetting liquid intrusion was explored experimentally. For this purpose, high-pressure water intrusion together with high-pressure in situ small-angle neutron scattering were applied for superhydrophobic grafted silica and two metal-organic frameworks (MOFs) with different flexibility [ZIF-8 and Cu2(tebpz) (tebpz = 3,3',5,5'tetraethyl-4,4'-bipyrazolate)]. These results established the relation between the pressurization rate, water intrusion-extrusion hysteresis, and porous materials' flexibility. It was demonstrated that the dynamic hysteresis of water intrusion into superhydrophobic nanopores can be controlled by the flexibility of a porous material. This opens a new area of applications for flexible MOFs, namely, a smart pressure-transmitting fluid, capable of dissipating undesired vibrations depending on their frequency. Finally, nanotriboelectric experiments were conducted and the results showed that a porous material's topology is important for electricity generation while not affecting the dynamic hysteresis at any speed.

14.
Proc Natl Acad Sci U S A ; 112(45): 13886-91, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26504206

RESUMO

Inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens is a large oligomeric protein derived from a hyperthermophilic microorganism that is found near hydrothermal vents deep under the sea, where the pressure is up to 100 MPa (1 kbar). It has attracted great interest in biophysical research because of its high activity under extreme conditions in the seabed. In this study, we use the quasielastic neutron scattering (QENS) technique to investigate the effects of pressure on the conformational flexibility and relaxation dynamics of IPPase over a wide temperature range. The ß-relaxation dynamics of proteins was studied in the time ranges from 2 to 25 ps, and from 100 ps to 2 ns, using two spectrometers. Our results indicate that, under a pressure of 100 MPa, close to that of the native environment deep under the sea, IPPase displays much faster relaxation dynamics than a mesophilic model protein, hen egg white lysozyme (HEWL), at all measured temperatures, opposite to what we observed previously under ambient pressure. This contradictory observation provides evidence that the protein energy landscape is distorted by high pressure, which is significantly different for hyperthermophilic (IPPase) and mesophilic (HEWL) proteins. We further derive from our observations a schematic denaturation phase diagram together with energy landscapes for the two very different proteins, which can be used as a general picture to understand the dynamical properties of thermophilic proteins under pressure.


Assuntos
Proteínas Arqueais/química , Biopolímeros/química , Biologia Marinha , Pressão , Thermococcus/enzimologia
15.
J Chem Phys ; 143(11): 114508, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395720

RESUMO

With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

16.
J Phys Chem Lett ; 6(11): 2009-14, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26266493

RESUMO

Using neutron diffraction technique, we measure the average density of the heavy water confined in a nanoporous silica matrix, MCM-41, over the pressure-temperature plane. The result suggests the existence of a line of liquid-liquid phase transition with its end point at 1.29 ± 0.34 kbar and 213 ± 3 K in a fully hydrated sample. This point would be the liquid-liquid critical point (LLCP) according to the "liquid-liquid critical point" scenario. The phase diagram of the deeply cooled confined heavy water is then discussed. Moreover, in a partially hydrated sample, the phase transition completely disappears. This result shows that it is the free water part, rather than the bound water part, of the confined water that undergoes a liquid-liquid transition.

17.
J Chem Phys ; 141(1): 014501, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005293

RESUMO

The average density of D2O confined in a nanoporous silica matrix (MCM-41-S) is studied with neutron scattering. We find that below ~210 K, the pressure-temperature plane of the system can be divided into two regions. The average density of the confined D2O in the higher-pressure region is about 16% larger than that in the lower-pressure region. These two regions could represent the so-called "low-density liquid" and "high-density liquid" phases. The dividing line of these two regions, which could represent the associated 1st order liquid-liquid transition line, is also determined.

18.
Phys Rev Lett ; 112(23): 237802, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972226

RESUMO

The boson peak in deeply cooled water confined in nanopores is studied with inelastic neutron scattering. We show that in the (P, T) plane, the locus of the emergence of the boson peak is nearly parallel to the Widom line below ∼ 1600 bar. Above 1600 bar, the situation is different and from this difference the end pressure of the Widom line is estimated. The frequency and width of the boson peak correlate with the density of water, which suggests a method to distinguish the hypothetical "low-density liquid" and "high-density liquid" phases in deeply cooled water.


Assuntos
Modelos Químicos , Nanoporos , Difração de Nêutrons/métodos , Água/química , Temperatura Baixa , Transição de Fase
19.
Proc Natl Acad Sci U S A ; 108(30): 12206-11, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746898

RESUMO

A neutron scattering technique was developed to measure the density of heavy water confined in a nanoporous silica matrix in a temperature-pressure range, from 300 to 130 K and from 1 to 2,900 bars, where bulk water will crystalize. We observed a prominent hysteresis phenomenon in the measured density profiles between warming and cooling scans above 1,000 bars. We interpret this hysteresis phenomenon as support (although not a proof) of the hypothetical existence of a first-order liquid-liquid phase transition of water that would exist in the macroscopic system if crystallization could be avoided in the relevant phase region. Moreover, the density data we obtained for the confined heavy water under these conditions are valuable to large communities in biology and earth and planetary sciences interested in phenomena in which nanometer-sized water layers are involved.

20.
J Phys Chem B ; 113(15): 5001-6, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19323465

RESUMO

The low-temperature behavior of proteins under high pressure is not as extensively investigated as that at ambient pressure. In this paper, we study the dynamics of a hydrated protein under moderately high pressures at low temperatures using the quasielastic neutron scattering method. We show that when applying pressure to the protein-water system, the dynamics of the protein hydration water does not slow down but becomes faster instead. The degree of "softness" of the protein, which is intimately related to the enzymatic activity of the protein, shows the same trend as its hydration water as a function of temperature at different pressures. These two results taken together suggest that at lower temperatures, the protein remains soft and active under pressure.


Assuntos
Proteínas/química , Temperatura , Pressão , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA