Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
J Esthet Restor Dent ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757761

RESUMO

OBJECTIVES: To provide an overview of the current artificial intelligence (AI) based applications for assisting digital data acquisition and implant planning procedures. OVERVIEW: A review of the main AI-based applications integrated into digital data acquisitions technologies (facial scanners (FS), intraoral scanners (IOSs), cone beam computed tomography (CBCT) devices, and jaw trackers) and computer-aided static implant planning programs are provided. CONCLUSIONS: The main AI-based application integrated in some FS's programs involves the automatic alignment of facial and intraoral scans for virtual patient integration. The AI-based applications integrated into IOSs programs include scan cleaning, assist scanning, and automatic alignment between the implant scan body with its corresponding CAD object while scanning. The more frequently AI-based applications integrated into the programs of CBCT units involve positioning assistant, noise and artifacts reduction, structures identification and segmentation, airway analysis, and alignment of facial, intraoral, and CBCT scans. Some computer-aided static implant planning programs include patient's digital files, identification, labeling, and segmentation of anatomical structures, mandibular nerve tracing, automatic implant placement, and surgical implant guide design.

2.
J Dent ; : 105044, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710316

RESUMO

OBJECTIVES: To compare the trueness of maxillomandibular relationship between articulated 3D-printed and conventional diagnostic casts in maximum intercuspation (MIP). METHODS: Reference casts were articulated in MIP, and scanned using a Coordinate Measurement Machine (CMM, n = 1). Digital scans were made from the reference casts by using an intraoral scanner (IOS, n = 10) (Trios 4; 3Shape A/S). IOS scans were processed to create 3D-printed casts by using MAX UV385 (Asiga) and NextDent 5100 (3DSystems) 3D-printers. The conventional workflow implemented vinylpolysiloxane (VPS) impressions and Type IV stone. Stone and 3D-printed casts were articulated and digitized with a laboratory scanner (E4; 3Shape A/S). The 3D-printed casts were scanned on two occasions: with and without positioning pins. Inter-arch distances and 3D-contact area were measured and compared. Statistical tests used were Shapiro-Wilk, Levene's, Welch's t-test, and 2-way ANOVA (α=0.05). RESULTS: IOS group showed similar or better maxillomandibular relationship trueness than stone casts and 3D-printed casts (p < 0.05). 3D-contact area analysis showed similar deviations between 3D-printed and stone casts (p > 0.05). The choice of 3D-printer and presence of positioning pins on the casts significantly influenced maxillomandibular relationship trueness (p < 0.05). CONCLUSIONS: Articulated 3D-printed and stone casts exhibited similar maxillomandibular relationship trueness. CLINICAL SIGNIFICANCE: Although 3D-printing methods can introduce a considerable amount of deviations, the maxillomandibular relationship trueness of articulated 3D-printed and stone casts in MIP can be considered similar.

3.
J Prosthet Dent ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762385

RESUMO

Jaw tracking systems can record mandibular motion for incorporation into programs used for designing dental prostheses. However, the protocol for data acquisition and design using the recorded mandibular motion is unclear. The envelope of function recorded in a patient with acceptable occlusal function provides important functional information that can be integrated into the design of dental prostheses. A protocol for recording a patient's digital data, including the envelope of function using a jaw tracker, for incorporation into the design procedures and a delivery protocol are described. This technique may simplify the delivery of prostheses by reducing the adjustments needed to the definitive prostheses.

4.
J Esthet Restor Dent ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778662

RESUMO

OBJECTIVES: The purposes of this study were to classify the described digital facebow techniques for transferring the maxillary cast into the semi-adjustable virtual articulator based on the digital data acquisition technology used and to review the reported accuracy values of the different digital facebow methods described. OVERVIEW: Digital data acquisition technologies, including digital photographs, facial scanners, cone beam computed tomography (CBCT) imaging, and jaw tracking systems, can be used to transfer the maxillary cast into the virtual articulator. The reported techniques are reviewed, as well as the reported accuracy values of the different digital facebow methods. CONCLUSIONS: Digital photographs can be used to transfer the maxillary cast into the virtual articulator using the true horizontal reference plane, but limited studies have assessed the accuracy of this method. Facial scanning and CBCT techniques can be used to transfer the maxillary cast into the virtual articulator, in which the most frequently selected references planes are the Frankfort horizontal, axis orbital, and true horizontal planes. Studies analyzing the accuracy of the maxillary cast transfer by using facial scanning and CBCT techniques are restricted. Lastly, optical jaw trackers can be selected for transferring the maxillary cast into the virtual articulator by using the axis orbital or true horizontal planes, yet the accuracy of these systems is unknown. CLINICAL IMPLICATIONS: Digital data acquisition technologies, including digital photographs, facial scanning methods, CBCTs, and optical jaw tracking systems, can be used to transfer the maxillary cast into the virtual articulator. Studies are needed to assess the accuracy of these digital data acquisition technologies for transferring the maxillary cast into the virtual articulator.

6.
J Prosthet Dent ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714458

RESUMO

Different techniques of transferring the maxillary cast into the analog semi-adjustable articulator by using the true horizontal or gravity reference plane have been reported. However, procedures are required for recording this reference plane and transferring the maxillary cast into the virtual semi-adjustable articulator. In the present manuscript, a technique is described for registering the true horizontal or gravity plane in relationship to the natural head position of the patient by using an optical jaw tracking system. Additionally, the recorded true horizontal plane is used to transfer the maxillary cast into the virtual semi-adjustable articulator by using a dental computer-aided design program. This technique facilitates the maxillary cast transfer into the virtual articulator by using the true horizontal plane recorded with an optical jaw tracking system, maximizing the functionality of the optical jaw tracking device.

7.
EMBO Rep ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730210

RESUMO

Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.

8.
J Prosthet Dent ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641480

RESUMO

STATEMENT OF PROBLEM: Multiple factors can influence the accuracy of intraoral scanners (IOSs). However, the impact of scan extension and starting quadrant on the accuracy of IOSs for fabricating tooth-supported crowns remains uncertain. PURPOSE: The purpose of the present in vitro study was to measure the influence of scan extension (half or complete arch scan) and the starting quadrant (same quadrant or contralateral quadrant of the location of the crown preparation) on the accuracy of four IOSs. MATERIAL AND METHODS: A typodont with a crown preparation on the left first molar was digitized (T710) to obtain a reference scan. Four scanner groups were created: TRIOS 5, PrimeScan, i700, and iTero. Then, 3 subgroups were defined based on the scan extension and starting quadrant: half arch (HA subgroup), complete arch scan starting on the left quadrant (CA-same subgroup), and complete arch scan starting on the right quadrant (CA-contralateral subgroup), (n=15). The reference scan was used as a control to measure the root mean square (RMS) error discrepancies with each experimental scan on the tooth preparation, margin of the tooth preparation, and adjacent tooth areas. Two-way ANOVA and pairwise multiple comparisons were used to analyze trueness (α=.05). The Levene and pairwise comparisons using the Wilcoxon Rank sum tests were used to analyze precision (α=.05). RESULTS: For the tooth preparation analysis, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.002). The iTero and TRIOS5 groups obtained better trueness than the PrimeScan and i700 groups (P<.001). Moreover, half arch scans obtained the best trueness, while the CA-contralateral scans obtained the worst trueness (P<.001). The iTero group showed the worst precision among the IOSs tested. For the margin of the tooth preparation evaluation, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.005). The iTero group obtained best trueness (P<.001), but the worst precision (P<.001) among the IOSs tested. Half arch scans obtained the best trueness and precision values. For the adjacent tooth analysis, trueness and precision differences were found among the groups (P<.001) and subgroups tested (P<.001), with a significant interaction group×subgroup (P=.005). The TRIOS 5 obtained the best trueness and precision. Half arch scans obtained the best accuracy. CONCLUSIONS: Scan extension and the starting quadrant impacted the scanning trueness and precision of the IOSs tested. Additionally, the IOSs showed varying scanning discrepancies depending on the scanning area assessed. Half arch scans presented the highest trueness and precision, and the complete arch scans in which the scan started in the contralateral quadrant of where the crown preparation was obtained the worst trueness and precision.

9.
J Prosthet Dent ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641478

RESUMO

STATEMENT OF PROBLEM: Different digital methods have been described for transferring the maxillary cast into a virtual articulator; however, its accuracy remains uncertain. PURPOSE: The purpose of this in vitro study was to compare the accuracy of the maxillary cast transfer into the virtual semi-adjustable articulator by using analog and digital methods. MATERIAL AND METHODS: A maxillary typodont with 5 markers was positioned into a mannequin, which was digitized by using an industrial scanner (ATOS Q) and an extraoral scan of the typodont obtained (T710). Three groups were created based on the technique used to transfer the maxillary cast into the virtual articulator (Panadent PCH Articulator): conventional facebow record (CNV group), digital photograph (P group), and facial scanning (FS group) (n=10). In the CNV group, conventional facebow records (Kois Dentofacial analyzer system) were digitized (T710) and used to mount the maxillary scan into the articulator by aligning it with the reference platform (Kois adjustable platform) (DentalCAD). In the P group, photographs with the reference glasses (Kois Reference Glasses 3.0) were positioned in the mannequin. Each photograph was superimposed with the maxillary scan. Then, the maxillary scan was transferred into the virtual articulator by using the true horizontal plane information of the photograph. In the FS group, facial scans with an extraoral scan body (Kois Scan Body) were positioned in the mannequin by using a facial scanner (Instarisa). The extraoral scan body was digitized by using the same extraoral scanner. The digitized extraoral scan body provided the true horizontal plane information that was used to mount the maxillary scan into the articulator, along with the Kois disposable tray of the scan body. On the reference scan and each specimen, 15 linear measurements between the markers of the maxillary scans and the horizontal plane of the virtual articulator and 3 linear measurements between the maxillary dental midline and articulator midline were calculated. The measurements of the reference scan were used as a control to assess trueness and precision. Trueness was analyzed by using 1-way ANOVA followed by the pairwise comparison Tukey tests (α=.05). Precision was evaluated by using the Levene and pairwise comparisons Wilcoxon Rank sum tests. RESULTS: No significant trueness (P=.996) or precision (P=.430) midline discrepancies were found. Significant posterior right (P<.001), anterior (P=.005), posterior left (P<.001), and overall (P<.001) trueness discrepancies were revealed among the groups. The P group obtained the best posterior right, posterior left, and overall trueness and precision. The P and FS groups demonstrated the best anterior trueness, but no anterior precision discrepancies were found. CONCLUSIONS: The techniques tested affected the accuracy of the maxillary cast transfer into the virtual semi-adjustable articulator. In the majority of the parameters assessed, the photography method tested showed the best trueness and precision values. However, the maxillary cast transfer accuracy ranged from 137 ±44 µm to 453 ±176 µm among the techniques tested.

10.
J Prosthet Dent ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604907

RESUMO

STATEMENT OF PROBLEM: Maxillary and mandibular scans can be articulated in maximum intercuspal position (MIP) by using an artificial intelligence (AI) based program; however, the accuracy of the AI-based program locating the MIP relationship is unknown. PURPOSE: The purpose of the present clinical study was to assess the accuracy of the MIP relationship located by using 4 intraoral scanners (IOSs) and an AI-based program. MATERIAL AND METHODS: Conventional casts of a participant mounted on an articulator in MIP were digitized (T710). Four groups were created based on the IOS used to record a maxillary and mandibular scan of the participant: TRIOS4, iTero, i700, and PrimeScan. Each pair of nonarticulated scans were duplicated 20 times. Three subgroups were created: IOS, AI-articulated, and AI-IOS-corrected subgroups (n=10). In the IOS-subgroup, 10 duplicated scans were articulated in MIP by using a bilateral occlusal record. In the AI-articulated subgroup, the remaining 10 duplicated scans were articulated in MIP by using an AI-based program (BiteFinder). In the AI-IOS-corrected subgroup, the same AI-based program was used to correct the occlusal collisions of the articulated specimens obtained in the IOS-subgroup. A reverse engineering program (Geomagic Wrap) was used to calculate 36 interlandmark measurements on the digitized articulated casts (control) and each articulated specimen. Two-way ANOVA and pairwise multiple comparison Tukey tests were used to analyze trueness (α=.05). The Levene and pairwise multiple comparison Wilcoxon rank tests were used to analyze precision (α=.05). RESULTS: Significant trueness discrepancies among the groups (P<.001) and subgroups (P<.001) were found, with a significant interaction group×subgroup (P<.001). The Levene test showed significant precision discrepancies among the groups (P<.001) and subgroups (P=.005). The TRIOS4 and iTero groups obtained better trueness and lower precision than the i700 and PrimeScan systems. Additionally, the AI-articulated subgroup showed worse trueness and precision than the IOS and AI-IOS-corrected subgroups. The AI-based program improved the MIP trueness of the scans articulated by using the iTero and PrimeScan systems but reduced the MIP trueness of the articulated scans obtained by using the TRIOS4 and i700. CONCLUSIONS: The trueness and precision of the maxillomandibular relationship was impacted by the IOS system and program used to locate the MIP.

11.
Int J Oral Maxillofac Implants ; 0(0): 1-14, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607358

RESUMO

A technique for virtually planning single implant by combining an intraoral digital scan, an opensource computer-aided design software program, bone sounding, and 2-dimensional radiographic imaging is described. The surgical implant guide is fabricated by using additive manufacturing technologies. Furthermore, the surgical implant guide positioned in the patient's mouth is used to radiographically verify the estimated mesio-distal implant angulation before proceeding with the surgical intervention and modified, if necessary. When a cone bean computed tomography scan is not available, this technique eases implant planning procedures and minimize possible surgical complications.

12.
J Prosthet Dent ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38609764

RESUMO

STATEMENT OF PROBLEM: Digital photographs can be used for transferring the maxillary cast into the virtual semi-adjustable articulator; however, its accuracy remains unknown. PURPOSE: The purpose of the present study was to compare the accuracy of the maxillary cast transfer into the virtual semi-adjustable articulator by using an analog and a digital standardized photography technique. MATERIAL AND METHODS: A maxillary cast was digitized (T710) and positioned into a dental mannequin. The dental midline was not coincident with the facial midline and the maxillary occlusal plane was tilted. A reference scan of the assembled mannequin was obtained by using a facial scanner (Instarisa). Two groups were created based on the technique used to transfer the maxillary cast into the articulator (Panadent PCH): conventional facebow record (CNV group) or digital photograph (Photo group) (n=10). In the CNV group, facebow records (Kois Dentofacial analyzer system) were digitized (T710) and used to transfer the maxillary scan into the articulator by aligning it with the reference platform (Kois adjustable platform). In the Photo group, photographs with a reference glasses (Kois Reference Glasses) positioned into the mannequin were acquired. Each photograph was aligned with the maxillary scan. Then, the maxillary scan was transferred into the articulator by using the true horizontal axis information contained in the photograph. On the reference scan and each specimen, 10 linear measurements between the buccal cusps of the maxillary scan and the horizontal plane of the virtual articulator and a linear measurement between the maxillary dental midline and articulator midline were calculated. The measurements of the reference scan were used as a control to compute trueness and precision. Trueness was analyzed by using 1-way ANOVA followed by the pairwise comparison Tukey test (α=.05). Precision was evaluated by using the Levene and Wilcoxon Rank sum tests (α=.05). RESULTS: The overall discrepancy measured in the CNV group was 0.620 ±0.396 mm, while in the Photo group it was 1.282 ±0.118 mm. Significant trueness differences were found in the midline (P=.037), anterior (P=.050), posterior right (P<.001), posterior left (P=.012), and overall discrepancy (P<.001) between the CNV and Photo groups. Significant precision discrepancies were found in the midline (P=.012), posterior right (P<.001), anterior (P<.001), posterior left (P=.002), and overall discrepancy (P<.001) between the CNV and Photo groups. CONCLUSIONS: The facebow record method impacted the accuracy of the maxillary cast transfer. The Photo group obtained better trueness in the midline transfer than the CNV group; however, the CNV group demonstrated better trueness in the anterior, posterior right, posterior left, and overall discrepancy of the maxillary cast transfer compared with the Photo group. Overall, the Photo group obtained better precision than the CNV group.

13.
J Prosthet Dent ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653690

RESUMO

STATEMENT OF PROBLEM: The influence of different ambient factors including lighting has been previously studied. However, the influence of ambient color lighting settings on intraoral scanning accuracy remains uncertain. PURPOSE: The purpose of this in vitro study was to assess the influence of ambient color lighting on the accuracy of complete arch implant scans recorded by using 2 intraoral scanners (IOSs). MATERIAL AND METHODS: An edentulous maxillary cast with 6 implant scan bodies was digitized by using a laboratory scanner (DW-7-140) to obtain a reference file. Two groups were created based on the IOS tested: TRIOS 4 (IOS-1) and i700 (IOS-2). Seven subgroups were developed depending on the ambient color lighting (red, green, blue, yellow, cyan, magenta, and white) (n=15). Scanning accuracy was analyzed by using a metrology software program (Geomagic Control X). The Kruskal-Wallis, 1-way ANOVA, and pairwise comparisons were used to analyze the data (α=.05). RESULTS: Significant trueness and precision values were found across the groups (P<.05) and subgroups (P<.05). For IOS-1, blue ambient lighting obtained the best trueness (19.8 ±1.8 µm) (P<.05); in precision, white light (20.8 ±7.3 µm) and blue light (22.1 ±13.5) showed the best results (P<.05). For IOS-2, white light showed the best trueness (51.9 ±16.7 µm); the best precision was obtained under magenta (38.6 ±10.4 µm) and yellow light (52.6 ±24.0 µm) (P<.05). CONCLUSIONS: The optimal ambient color lighting varied between the IOSs assessed. As the best condition for maximizing accuracy was not found, ambient color lighting must be individualized for the IOS system used.

14.
J Prosthet Dent ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458860

RESUMO

STATEMENT OF PROBLEM: An artificial-intelligence (AI) based program can be used to articulate scans in maximum intercuspal position (MIP) or correct occlusal collisions of articulated scans at MIP; however, the accuracy of the AI program determining the MIP relationship is unknown. PURPOSE: The purpose of the present clinical study was to assess the influence of intraoral scanner (IOS) (TRIOS 5 or i700) and program (IOS or AI-based program) on the accuracy of the MIP relationship. MATERIAL AND METHODS: Casts of a participant mounted on an articulator were digitized (T710). A maxillary and a mandibular scan of the participant were recorded by using 2 IOSs: TRIOS 5 and i700. The scans were duplicated 15 times. Then, each duplicated pair of scans was articulated in MIP using a bilateral occlusal record. Articulated scans were duplicated and allocated into 2 groups based on the automatic occlusal collisions' correction completed by using the corresponding IOS program: IOS-corrected and IOS-noncorrected group. Three subgroups were created based on the AI-based program (Bite Finder) method: AI-articulated, AI-IOS-corrected, and AI-IOS-noncorrected (n=15). In the AI-articulated subgroup, the nonarticulated scans were imported and articulated. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-corrected group were imported, and the occlusal collisions were corrected. In the AI-IOS-corrected subgroup, the articulated scans obtained in the IOS-noncorrected subgroup were imported, and the occlusal collisions were corrected. A total of 36 interlandmark measurements were calculated on each articulated scan (Geomagic Wrap). The distances computed on the reference scan were used as a reference to calculate the discrepancies with each experimental scan. Nonparametric 2-way ANOVA and pairwise multiple comparison Dwass-Steel-Critchlow-Fligner tests were used to analyze trueness. The general linear model procedure was used to analyze precision (α=.05). RESULTS: Significant maxillomandibular trueness (P=.003) and precision (P<.001) differences were found among the subgroups. The IOS-corrected and IOS-noncorrected (P<.001) and AI-articulated and IOS-noncorrected subgroups (P=.011) were significantly different from each other. The IOS-corrected and AI-articulated subgroups obtained significantly better maxillomandibular trueness and precision than the IOS-noncorrected subgroups. CONCLUSIONS: The IOSs tested obtained similar MIP accuracy; however, the program used to articulate or correct occlusal collusions impacted the accuracy of the MIP relationship.

15.
J Prosthet Dent ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38443245

RESUMO

STATEMENT OF PROBLEM: Different techniques have been proposed for increasing the accuracy of complete arch implant scans obtained by using intraoral scanners (IOSs), including a calibrated metal framework (IOSFix); however, its accuracy remains uncertain. PURPOSE: The purpose of this in vitro study was to compare the accuracy of complete arch scans obtained with connecting and non-connecting the implant scan bodies (ISBs) recorded using intraoral scanners (IOSs), a laboratory scanner (LBS), and photogrammetry (PG). MATERIAL AND METHODS: A cast with 6 implant abutment analogs was obtained. Six groups were created: TRIOS 4, i700, iTero, CS3800, LBS, and PG groups. The IOSs and LBS groups were divided into 3 subgroups: nonconnected ISBs (ISB), splinted ISBs (SSB), and calibrated framework (CF), (n=15). For the ISB subgroups, an ISB was positioned on each implant abutment analog. For the SSB subgroups, a printed framework was used to connect the ISBs. For the CF subgroups, a calibrated framework (IOSFix) was used to connect the ISBs. For the PG group, scans were captured using a PG (PIC Camera). Implant positions of the reference cast were measured using a coordinate measurement machine, and Euclidean distances were used as a reference to calculate the discrepancies using the same distances obtained on each experimental scan. Wilcoxon squares 2-way ANOVA and pairwise multiple comparisons were used to analyze trueness (α=.05). The Levene test was used to analyze precision (α=.05). RESULTS: Linear and angular discrepancies were found among the groups (P<.001) and subgroups (P<.001). Linear (P=.008) and angular (P<.001) precision differences were found among the subgroups. CONCLUSIONS: The digitizing method and technique impacted the trueness and precision of the implant scans. The photogrammetry and calibrated framework groups obtained the best accuracy. Except for TRIOS 4, the calibrated framework method improved the accuracy of the scans obtained by using the IOSs tested.

16.
Int J Prosthodont ; 37(7): 133-141, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38498865

RESUMO

PURPOSE: To evaluate the flexural strength (FS) and microhardness of various CAD/CAM restorative materials intended for definitive use. The effect of hydrothermal aging on the mechanical properties of these materials was also investigated. MATERIALS AND METHODS: A total of 210 bar-shaped specimens (17 × 4 × 1.5 mm ± 0.02 mm) were fabricated via either subtractive manufacturing (SM) methods-reinforced composite resin (SM-CR), polymer-infiltrated ceramic network (SM-PICN), fine-structured feldspathic ceramic (SMFC), nanographene-reinforced polymethyl methacrylate (PMMA; SM-GPMMA), PMMAbased resin (SM-PMMA)-or additive manufacturing (AM) methods with urethane acrylate-based resins (AM-UA1 and AM-UA2). Specimens were then divided into two subgroups (nonaged or hydrothermal aging; n = 15). A three-point flexural strength test was performed, and five specimens from the nonaged group were submitted to microhardness testing. Specimens were subjected to 10,000 thermal cycles, and the measurements were repeated. RESULTS: Regardless of aging, SM-CR had the highest FS (P < .001), followed by SM-GPMMA (P ≤ .042). In nonaged groups, AM-UA2 had a lower FS than all other materials except SM-FC (P = 1.000). In hydrothermal aging groups, AM specimens had lower FS values than other materials, except SM-PMMA. With regard to microhardness, there was no significant difference found between any of the tested materials (P ≥ .945) in the nonaged and hydrothermal aging groups. CONCLUSIONS: The effect of hydrothermal aging on FS varied depending on the type of restorative material. Regardless of aging condition, SM-CR showed the highest FS values, whereas SM-FC had the highest microhardness. Hydrothermal aging had no significant influence on the microhardness of the tested materials.


Assuntos
Resistência à Flexão , Polimetil Metacrilato , Materiais Dentários , Resinas Compostas , Polímeros , Teste de Materiais , Propriedades de Superfície , Desenho Assistido por Computador
17.
Int J Prosthodont ; 37(7): 19-29, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38489217

RESUMO

PURPOSE: To evaluate the effect of polymerization unit, polishing, and coffee thermocycling on the color and translucency of additively manufactured polyurethane-based resins with different viscosities. In addition, their color behavior was compared with the color of the shade tab throughout the fabrication steps and aging. MATERIALS AND METHODS: Disk-shaped specimens (Ø10 × 2 mm) were fabricated from polyurethane-based resins with different viscosities (Tera Harz TC-80DP and C&B permanent; n = 30 per material). Baseline color coordinates were measured after cleaning. The specimens in each resin group were divided into three subgroups (n = 10 per subgroup) to be polymerized with different polymerization units (Otoflash G171 [FLN], Wash and Cure 2.0 [CLED1], and P Cure [CLED2]), polished, and subjected to coffee thermocycling. Color coordinates were remeasured after each process. Color differences (ΔE00) and relative translucency parameter (RTP) values were calculated. Data were statistically analyzed (α = .05). RESULTS: Time points and polymerization units affected the ΔE00 for each material (P ≤ .049). ΔE00 of each polymerization unit pair had significant differences within and among different time points within each material (P ≤ .024). ΔE00 (when compared with the shade tab) and RTP were mostly affected by polymerization units and time points within both materials (P ≤ .042). CONCLUSIONS: Tested polymerization units, polishing, and coffee thermocycling affected the color difference and translucency of tested resins. Color differences ranged from moderately unacceptable to extremely unacceptable, and the differences in translucency values mostly ranged from perceptible to unacceptable, according to previous thresholds. In addition, tested resin-polymerization unit pairs had unacceptable color differences when compared to the shade tab. CLED1 may enable higher color stability for tested resins.


Assuntos
Café , Implantes Dentários , Polimerização , Poliuretanos , Cor , Teste de Materiais , Propriedades de Superfície , Resinas Compostas
18.
J Comp Physiol B ; 194(1): 7-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345639

RESUMO

The goal of this study was to characterize the cardiorespiratory patterns of male South American sea lions (SASLs, Otaria flavescens) resting on land. We recorded respiratory and heart rate (n = 360 individuals studied) by observing the nostrils, chest movements and the impact of the heart on the thoracic wall. The sea lions breathe apneustically with a pause on inspiration, representing 74% of the respiratory cycle. The mean breathing frequency was 3.2 ± 1.0 breaths min-1, with a breathing cycle presenting periods of bradypneas, tachypneas, and long-term post-inspiratory pauses. The normal heart rate (nHR) was 73.4 ± 14.5 beats min-1 and no significant differences were observed between age classes. All animals showed variability in HR in relation to respiratory phases (Inspiration: 101.2 ± 18.4 beats min-1; post-inspiratory pause: 73.4 ± 14.5 beats min-1; expiration: 64.6 ± 17.7 beats min-1), consistent with respiratory sinus arrhythmia (RSA). The mean HR (measured during all respiratory phases) was 79.9 ± 22.7 beats min-1, and was significantly different between age classes. The total duration of respiratory cycle, and duration of both inspiration and expiration, decreased with an increment in ambient temperature, with no variation in the pause duration. Heart rate during pause and expiration was significantly higher during high temperatures. Similar changes in cardiorespiratory patterns have been reported in other pinnipeds. Our results showed ontogenetic differences in development and typical variations with environmental and behavioral variables.


Assuntos
Leões-Marinhos , Humanos , Masculino , Animais , Respiração , Frequência Cardíaca/fisiologia , América do Sul
19.
J Prosthet Dent ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38418304

RESUMO

STATEMENT OF PROBLEM: The fit of implant-supported prostheses plays an important role in their mechanical and biological stability. Clinically, the prosthetic fit is typically assessed radiographically, but this method relies on the operator's subjective evaluation. Whether available digital tools could optimize the evaluation of the prosthetic fit is uncertain. PURPOSE: The purpose of this in vitro study was to evaluate the influence of an image processing program on the radiographic detection of discrepancies in the active and passive fit of implant-supported prostheses. Two-implant-supported screw-retained prostheses were analyzed by simulating the vertical and horizontal misfits of 3 different implant abutment configurations. MATERIAL AND METHODS: Seven casts were fabricated using 2 internal-connection titanium implants: 1 control; 3 with vertical (V) misfit of 50 µm, 100 µm, 150 µm; and 3 with horizontal (H) misfit of 35 µm, 70 µm, 100 µm. Thirty bar-shaped zirconia frameworks were fabricated and divided into 3 groups (n=10) according to their attachment to 2 engaging (E-E), 2 nonengaging (NE-NE), and engaging and nonengaging (E-NE) titanium bases. Digital parallel periapical radiographs were made of each specimen in the passive and active fit situation on each cast (1-screw test), except for the E-E specimens, which were only seated on the control, H35, and H70 casts because the fit on the remaining casts was poor. The mean gray value (MGV) was measured at the chosen regions of interest on the second implant (side B) using the ImageJ software program. Differences in the MGV measurements between the passive and active conditions were tested using a t test (α=.05) and compared the different misfit levels using analysis of variance (1-way ANOVA), followed by the Tukey HSD test (α=.05). RESULTS: The highest values for the differences between passive and active fit were found for the V150 and H100 misfit simulations (P<.05). Statistical differences between the MGVs were found with some exceptions: the smallest simulated misfits (H35 and V50) revealed statistically significant MGV differences from the highest simulated misfits (V150, H100) and from the H70 in the groups where an engaging component was present (P>.05). In the horizontal misfit group of NE-NE abutment configuration, H70 revealed no significant difference from the control group cast (P>.05). CONCLUSIONS: Measuring MGV differences between passive and active fit could be a promising alternative for detecting 70- to 150-µm gaps in the implant-abutment connection that result from the misfit. However, the procedure was not adequate for detecting <50 µm gaps, cannot be uniformly applied to all types of implant-abutment connections, and requires 2 exposures to X-radiation.

20.
J Prosthet Dent ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38388214

RESUMO

A facially driven digital guided crown lengthening method using the virtual smile design approach supplemented with a static 3-dimensional face scan that demonstrates the digital data of extraoral soft tissue is presented. The technique enables the practitioner to virtually design the new smile and surgically plan the crown lengthening procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA